Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Elementary subgroup of an isotropic reductive group is perfect


Authors: A. Yu. Luzgarev and A. K. Stavrova
Translated by: A. Yu. Luzgarev
Original publication: Algebra i Analiz, tom 23 (2011), nomer 5.
Journal: St. Petersburg Math. J. 23 (2012), 881-890
MSC (2010): Primary 20G35
DOI: https://doi.org/10.1090/S1061-0022-2012-01221-5
Published electronically: July 10, 2012
MathSciNet review: 2918426
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be an isotropic reductive algebraic group over a commutative ring $ R$. Assume that the elementary subgroup $ E(R)$ of the group of points $ G(R)$ is well defined. Then $ E(R)$ is perfect, except for the well-known case of a split reductive group of type $ C_2$ or $ G_2$.


References [Enhancements On Off] (What's this?)

  • 1. V. A. Petrov and A. K. Stavrova, Elementary subgroups of isotropic reductive groups, Algebra i Analiz 20 (2008), no. 4, 160-188; English transl., St. Petersburg Math. J. 20 (2009), no. 4, 625-644. MR 2473747 (2009j:20069)
  • 2. A. K. Stavrova, The structure of isotropic reductive groups, Kand. diss., S.-Peterburg. Univ., St. Petersburg, 2009. (Russian)
  • 3. A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252; English transl. in Math. USSR-Izv. 11 (1977), no. 1. MR 0472792 (57:12482)
  • 4. H. Azad, M. Barry, and G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), 551-562. MR 1047327 (91d:20048)
  • 5. H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 5-60. MR 0174604 (30:4805)
  • 6. A. Bak and N. Vavilov, Structure of hyperbolic unitary groups. I. Elementary subgroups, Algebra Colloq. 7 (2000), 159-196. MR 1810843 (2002b:20070)
  • 7. A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. No. 27 (1965), 55-150. MR 0207712 (34:7527)
  • 8. N. Bourbaki, Éléments de mathématique. Fasc. 37. Groupes et algèbres de Lie. Chapitres 4-6, Actualités Sci. Indust., No. 1337, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • 9. M. Demazure and A. Grothendieck (eds.), Schémas en groupes, Lecture Notes in Math., vols. 151-153, Springer-Verlag, Berlin-New York, 1970. MR 0274458 (43:223a); MR 0274459 (43:223b); MR 0274460 (43:223c)
  • 10. V. Petrov and A. Stavrova, Tits indices over semilocal rings, Transform. Groups 16 (2011), 193-217. MR 2785501 (2012c:20144)
  • 11. M. R. Stein, Generators, relations, and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004. MR 0322073 (48:437)
  • 12. J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313-329. MR 0164968 (29:2259)
  • 13. L. N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings, Amer. J. Math. 110 (1988), 955-973. MR 0961501 (89i:20071)
  • 14. -, Normal subgroups of symplectic groups over rings, $ K$-Theory 2 (1989), 647-673. MR 0999398 (90f:20064)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 20G35

Retrieve articles in all journals with MSC (2010): 20G35


Additional Information

A. Yu. Luzgarev
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskaya ul. 28, Stary Petergof, St. Petersburg 198504, Russia
Email: mahalex@gmail.com

A. K. Stavrova
Affiliation: Fakultät für Mathematik, Universität Duisburg-Essen, Germany
Email: anastasia.stavrova@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-2012-01221-5
Keywords: Reductive group, affine group scheme, elementary subgroup, Chevalley commutator formula
Received by editor(s): May 27, 2010
Published electronically: July 10, 2012
Additional Notes: Supported by the research program 6.38.74.2011 “The Structural Theory and Geometry of Algebraic Groups and Their Applications in Representation Theory and Algebraic K-Theory” of St. Petersburg State University and by the RFBR projects 09-01-00878, 09-01-90304, 10-01-00551, 10-01-90016. The first author was also supported by the RFBR project 09-01-00874. The second author was also supported by the grants DFG GI 706/1-2 and DFG SFB/TR 45.
Dedicated: To our Teacher Nikolai Vavilov, on the occasion of his 60th birthday
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society