Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Reducibility of function pairs in $ H^\infty_{\mathbb{R}}$


Author: Raymond Mortini
Original publication: Algebra i Analiz, tom 23 (2011), nomer 6.
Journal: St. Petersburg Math. J. 23 (2012), 1013-1022
MSC (2010): Primary 30H05, 46H15, 30J10, 30H80
DOI: https://doi.org/10.1090/S1061-0022-2012-01227-6
Published electronically: September 17, 2012
MathSciNet review: 2962183
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short proof of a result by Brett Wick on the reducibility of function pairs in $ H^{\infty }_ \mathbb{R}$ is presented, and some unusual properties of the solutions to the associated Bézout equations are unveiled.


References [Enhancements On Off] (What's this?)

  • 1. G. Corach and F. D. Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), 627-639. MR 0806470 (87b:46056)
  • 2. -, On the stable range of uniform algebras and $ H^\infty $, Proc. Amer. Math. Soc. 98 (1986), 607-610. MR 0861760 (87m:46103)
  • 3. J. B. Garnett, Bounded analytic functions, Pure Appl. Math., vol. 96, Acad. Press, New York-London, 1981. MR 0628971 (83g:30037)
  • 4. P. Gorkin, R. Mortini, and N. Nikolski, Norm controlled inversions and a corona theorem for $ H^\infty $-quotient algebras, J. Funct. Anal. 255 (2008), 854-876. MR 2433955 (2009h:30061)
  • 5. K. Hoffman, Banach spaces of analytic functions, Reprint of the 1962 original, Dover Publ., Inc., New York, 1988. MR 1102893 (92d:46066)
  • 6. S. H. Kulkarni and B. V. Limaye, Real function algebras, Monogr. Textbooks Pure Appl. Math., vol. 168, Marcel Dekker, New York, 1992. MR 1197884 (93m:46059)
  • 7. R. Mortini, The covering dimension of a distinguished subset of the spectrum $ M(H^\infty )$ of $ H^\infty $ and the algebra of real symmetric and continuous functions on $ M(H^\infty )$, Topology Appl. 159 (2012), 900-910. MR 2868890
  • 8. R. Mortini and R. Rupp, A note on some uniform algebra generated by smooth functions in the plane, J. Funct. Spaces Appl. Article ID 905650 (2012), 15 pages.
  • 9. R. Mortini and B. Wick, The Bass and topological stable ranks of $ H^\infty _{\mathbb{R}}(\mathbb{D})$ and $ A_{\mathbb{R}}(\mathbb{D})$, J. Reine Angew. Math. 636 (2009), 175-191. MR 2572249 (2010m:46079)
  • 10. -, Spectral characteristics and stable ranks for the Sarason algebra $ H^\infty +C$, Michigan Math. J. 59 (2010), 395-409. MR 2677628 (2011j:46085)
  • 11. F. D. Suárez, Čech cohomology and covering dimension for the $ H^\infty $ maximal ideal space, J. Funct. Anal. 123 (1994), 233-263. MR 1283028 (95g:46100)
  • 12. S. Treil, The stable rank of the algebra $ H^\infty $ equals 1, J. Funct. Anal. 109 (1992), 130-154. MR 1183608 (93h:46076)
  • 13. B. Wick, A note about stabilization in $ A_{\mathbb{R}}(\mathbb{D})$, Math. Nachr. 282 (2009), 912-916. MR 2530887 (2010d:46065)
  • 14. -, Stabilization in $ H^\infty _{\mathbb{R}}(\mathbb{D})$, Publ. Mat. 54 (2010), 25-52. MR 2603587 (2011c:46112)
  • 15. -, Corrigenda. ``Stabilization in $ H^\infty _{\mathbb{R}}(\mathbb{D})$'', Publ. Mat. 55 (2011), 251-260. MR 2779583 (2012a:46090)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30H05, 46H15, 30J10, 30H80

Retrieve articles in all journals with MSC (2010): 30H05, 46H15, 30J10, 30H80


Additional Information

Raymond Mortini
Affiliation: Département de Mathématiques, LMAM, UMR 7122, Université Paul Verlaine, Ile duSaulcy, F-57045 Metz, France
Email: mortini@math.univ-metz.fr

DOI: https://doi.org/10.1090/S1061-0022-2012-01227-6
Keywords: Corona theorem, Bézout equation, Blaschke product
Received by editor(s): June 28, 2010
Published electronically: September 17, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society