Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the spectrum of the Laplace operator on the infinite Dirichlet ladder


Author: S. A. Nazarov
Translated by: A. I. Plotkin
Original publication: Algebra i Analiz, tom 23 (2011), nomer 6.
Journal: St. Petersburg Math. J. 23 (2012), 1023-1045
MSC (2010): Primary 35J05
DOI: https://doi.org/10.1090/S1061-0022-2012-01228-8
Published electronically: September 17, 2012
MathSciNet review: 2962184
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The spectrum of the Dirichlet problem is studied in the case of a periodic infinite planar domain having the form of an accommodation ladder: two parallel strips-uprights of thickness $ h>0$ are linked by treads of the same thickness. It is shown that, for $ h$ small, a gap is always opened between the second and third segments of the essential spectrum of the problem operator. The gap between the first and second segments is also discussed: its presence and characteristics depend on the distance between the uprights. It is shown that variation of the thickness of finitely many treads leads to the arising of any prescribed number of discrete spectrum points below the essential spectrum as well as inside the open gap.


References [Enhancements On Off] (What's this?)

  • 1. O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, Nauka, Moscow, 1973; English transl., Appl. Math. Sci., vol. 49, Springer-Verlag, New York, 1985. MR 0599579 (58:29032); MR 0793735 (87f:35001)
  • 2. M. Sh. Birman and M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert space, Leningrad. Univ., Leningrad, 1980; English transl., D. Reidel Publ. Co., Dordrecht, 1987. MR 0609148 (82k:47001); MR 1192782 (93g:47001)
  • 3. I. M. Gel'fand, Expansion in characteristic functions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR 73 (1950), no. 6, 1117-1120. (Russian) MR 0039154 (12:503a)
  • 4. P. A. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4, 3-52; English transl., Russian Math. Surveys 37 (1982), no. 4, 60-94. MR 0667973 (84b:35018)
  • 5. S. A. Nazarov, Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain, Sobolev Spaces in Mathematics. II (V. Maz'ya, ed.), Int. Math. Ser. (N. Y.), vol. 9, Springer, New York, 2009, pp. 261-309. MR 2484629 (2009m:35508)
  • 6. S. A. Nazarov and B. A. Plamenevskiĭ, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991; English transl., de Gruyter Exp. in Math., vol. 13, Walter de Gruyter and Co., Berlin, 1994. MR 1283387 (95h:35001)
  • 7. P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., vol. 60, Birkhäuser, Basel, 1993. MR 1232660 (94h:35002)
  • 8. T. Kato, Perturbatin theory for linear operators, Springer-Verlag, Berlin, 1995. MR 1335452 (96a:47025)
  • 9. S. A. Nazarov, Elliptic boundary value problems with periodic coefficients in a cylinder, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 101-112; English transl. in Math. USSR-Izv. 18 (1982), no. 1. MR 0607578 (82e:35035)
  • 10. Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica, Quantum bound states in open geometries, Phys. Rev. B 44 (1991), no. 15, 8028-8034.
  • 11. P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995), no. 1, 73-102. MR 1310767 (95m:81239)
  • 12. P. Exner, P. Šeba, M. Tater, and D. Vaněk, Bound states and scattering in quantum waveguides coupled laterally through a boundary window, J. Math. Phys. 37 (1996), no. 10, 4867-4887. MR 1411612 (98b:81032)
  • 13. D. Borisov, P. Exner, R. Gadyl'shin, and D. Krejčiřik, Bound states in weakly deformed strips and layers, Ann. Henri Poincaré 2 (2001), 553-572. MR 1846856 (2002f:35053)
  • 14. S. A. Nazarov, Discrete spectrum of cranked, branching, and periodic waveguides, Algebra i Analiz 23 (2011), no. 2, 206-247; English transl. in St. Petersburg Math. J. 23 (2012), no. 2. MR 2841676 (2012f:35382)
  • 15. -, Localized waves in $ T$-shape conjugation waveguide, Akust. Zh. 57 (2010), no. 6, 747-758. (Russian)
  • 16. K. Joshitomi, Band gap in the spectrum of periodically curved quantum waveguides, J. Differential Equations 142 (1998), no. 1, 123-166. MR 1492880 (99a:35038)
  • 17. L. Friedlander and M. Solomyak, On the spectrum of narrow periodic waveguides, Russ. J. Math. Phys. 15 (2008), no. 2, 238-242. MR 2410832 (2009b:35310)
  • 18. S. A. Nazarov, A gap in the essential spectrum of the Neumann problem for an elliptic system in a periodic domain, Funktsional. Anal. i Prilozhen. 43 (2009), no. 3, 92-95; English transl., Funct. Anal. Appl. 43 (2009), no. 3, 239-241. MR 2583962 (2010m:35339)
  • 19. -, An example of multiple gaps in the spectrum of a periodic waveguide, Mat. Sb. 201 (2010), no. 4, 99-124; English transl., Sb. Math. 201 (2010), no. 3-4, 569-594. MR 2675342 (2012c:35096)
  • 20. V. I. Smirnov, A course of higher mathematics. Vol. II, Nauka, Moscow, 1967; English transl., Pergamon Press, Oxford, 1964. MR 0182687 (32:170)
  • 21. V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obshch. 16 (1967), 209-292; English transl. in Trans. Moscow Math. Soc. 1967 (1968). MR 0226187 (37:1777)
  • 22. V. G. Maz'ya and B. A. Plamenevskiĭ, The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points, Math. Nachr. 76 (1977), 29-60. (Russian) MR 0601608 (58:29176)
  • 23. -, Estimates in $ L_p$ and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978), 25-82. (Russian) MR 0492821 (58:11886)
  • 24. S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5, 77-142; English transl., Russian Math. Surveys 54 (1999), no. 5, 947-1014. MR 1741662 (2001k:35073)
  • 25. -, On the asymptotics by parameter of the solution to a boundary value problem with periodic coefficients in cylinder, Differents. Uravneniya i Primenen. (Vilnius) 30 (1981), 27-44. (Russian)
  • 26. W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1, Akademie-Verlag, Berlin, 1991. (English transl., Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. 1, Birkhäuser, Basel, 2000). MR 1101139 (92g:35059); MR 1779977 (2001e:35044a)
  • 27. M. I. Vishik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekhi Mat. Nauk (N. S.) 12 (1957), no. 5, 3-122; English transl., Amer. Math. Soc. Transl. (2), vol. 20, Amer. Math. Soc., Providence, RI, 1962, pp. 239-364. MR 0096041 (20:2539); MR 0136861 (25:322)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J05

Retrieve articles in all journals with MSC (2010): 35J05


Additional Information

S. A. Nazarov
Affiliation: Institute of Mechanical Engineering Problems, Bol’shoĭ pr. V.O. 61, 199178 St.Petersburg, Russia
Email: srgnazarov@yahoo.co.uk

DOI: https://doi.org/10.1090/S1061-0022-2012-01228-8
Keywords: Periodic junction of thin domains, essential spectrum, Dirichlet problem, gaps, discrete spectrum
Received by editor(s): January 25, 2010
Published electronically: September 17, 2012
Additional Notes: Supported by RFBR (grant no. 09-01-00759)
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society