Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Kolmogorov widths and approximation numbers of Sobolev classes with singular weights


Author: A. A. Vasil′eva
Translated by: the author
Original publication: Algebra i Analiz, tom 24 (2012), nomer 1.
Journal: St. Petersburg Math. J. 24 (2013), 1-27
MSC (2010): Primary 41A46
DOI: https://doi.org/10.1090/S1061-0022-2012-01229-X
Published electronically: November 15, 2012
MathSciNet review: 3013292
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Kolmogorov widths of weighted Sobolev classes in weighted $ L_q$-spaces and the approximation numbers of the corresponding embedding operators are estimated. The case where the weights affect the asymptotics is considered.


References [Enhancements On Off] (What's this?)

  • 1. S. Heinrich, On the relation between linear $ n$-widths and approximation numbers, J. Approx. Theory 58 (1989), no. 3, 315-333. MR 1012680 (90g:41036)
  • 2. V. M. Tikhomirov, Diameters of sets in functional spaces and the theory of best approximations, Uspekhi Mat. Nauk 15 (1960), no. 3, 81-120; English transl., Russian Math. Surveys 15 (1960), no. 3, 75-111. MR 0117489 (22:8268)
  • 3. S. B. Babadzhanov and V. M. Tikhomirov, Diameters of a function class in an $ L^p$, $ (p>1)$, Izv. Akad. Nauk Uz.SSR Ser. Fiz.-Mat. Nauk 1967, no. 2, 24-30. (Russian) MR 0209747 (35:643)
  • 4. A. P. Buslaev and V. M. Tikhomirov, The spectra of nonlinear differential equations and widths of Sobolev classes, Mat. Sb. 181 (1990), no. 12, 1587-1606; English transl., Math. USSR-Sb. 71 (1992), no. 2, 427-446. MR 1099516 (92f:46036)
  • 5. R. S. Ismagilov, Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials, Uspekhi Mat. Nauk 29 (1974), no. 3, 161-178; English transl., Russian Math. Surveys 29 (1974), no. 3, 169-186. MR 0407509 (53:11284)
  • 6. B. S. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 334-351; English transl., Math. USSR-Izv. 11 (1977), no. 2, 317-333. MR 0481792 (58:1891)
  • 7. A. Pietsch, $ s$-numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223. MR 0361883 (50:14325)
  • 8. M. I. Stesin, Aleksandrov diameters of finite-dimensional sets and of classes of smooth functions, Dokl. Akad. Nauk SSSR 220 (1975), no. 6, 1278-1281; English transl., Soviet Math. Dokl. 16 (1975), no. 1, 252-256. MR 0617942 (58:29729)
  • 9. V. E. Maĭorov, Discretization of the problem of diameters, Uspekhi Mat. Nauk 30 (1975), no. 6, 179-180. (Russian) MR 0402349 (53:6170)
  • 10. Yu. I. Makovoz, A certain method of obtaining lower estimates for diameters of sets in Banach spaces, Mat. Sb. (N.S.) 87 (129) (1972), no. 1, 136-142; English transl. in Math. USSR-Sb. 16 (1972). MR 0291774 (45:865)
  • 11. E. D. Gluskin, Norms of random matrices and diameters of finite-dimensional sets, Mat. Sb. (N.S.) 120 (162) (1983), no. 2, 180-189; English transl. in Math. USSR-Sb. 48 (1984). MR 0687610 (84g:41021)
  • 12. V. M. Tikhomirov, Some questions in approximation theory, Moskov. Univ., Moscow, 1976. (Russian) MR 0487161 (58:6822)
  • 13. -, Approximation theory, Itogi Nauki i Tekhniki Sovrem. Probl. Mat. Fundam. Naprav., vol. 14, VINITI, Moscow, 1987, pp. 103-260; English transl., Encyclopaedia Math. Sci., vol. 14, Springer-Verlag, Berlin, 1990, pp. 93-243. MR 0915774; MR 1074378 (91e:00001)
  • 14. A. Pinkus, $ n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), Bd. 7, Springer, Berlin, 1985. MR 0774404 (86k:41001)
  • 15. M. A. Lifshits and W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc. 157 (2002), no. 745. MR 1895252 (2004g:47066)
  • 16. D. E. Edmunds and J. Lang, Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case, Math. Nachr. 279 (2006), no. 7, 727-742. MR 2226408 (2007b:47112)
  • 17. J. Lang, Improved estimates for the approximation numbers of Hardy-type operators, J. Approx. Theory 121 (2003), no. 1, 61-70. MR 1962996 (2003m:41036)
  • 18. E. N. Lomakina and V. D. Stepanov, On asymptotic behaviour of the approximation numbers and estimates of Schatten-von Neumann norms of the Hardy-type integral operators, Function Spaces and Applications (Delhi, 1997), Narosa, New Delhi, 2000, pp. 153-187. MR 1974800 (2004b:47080)
  • 19. -, Asymptotic estimates for the approximation and entropy numbers of the one-weight Riemann-Liouville operator, Mat. Tr. 9 (2006), no. 1, 52-100. (Russian) MR 2251331 (2997k:47077)
  • 20. A. A. Vasil'eva, Estimates of widths for weighted Sobolev classes, Mat. Sb. 201 (2010), no. 7, 15-52; English transl., Sb. Math. 201 (2010), no. 7-8, 947-984. MR 2907813
  • 21. -, Criterion for the existence of a continuous embedding of a weighted Sobolev class on a closed interval and on a semiaxis, Russ. J. Math. Phys. 16 (2009), no. 4, 543-562. MR 2587811 (2011j:46057)
  • 22. È. N. Batuev and V. D. Stepanov, Weighted inqualities of Hardy type, Sibirsk. Mat. Zh. 30 (1989), no. 1, 13-22; English transl., Siberian Math. J. 30 (1989), no. 1, 8-16. MR 0995015 (90f:26017)
  • 23. V. D. Stepanov, Two-weighted estimates for Riemann-Liouville integrals, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 645-656; English transl., Math. USSR-Izv. 36 (1991), no. 3, 669-681. MR 1072699 (92b:44006)
  • 24. -, Two-weighted estimates for Riemann-Liouville integrals, Rep. no. 39, Ceskoslov. Akad. Věd. Mat. Ústav., Prague, 1988, pp. 1-28.
  • 25. -, Weighted norm inequalities for integral operators and related topics, Nonlinear Analysis, Function Spaces and Applications, Vol. 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 139-175. MR 1322312 (96m:26019)
  • 26. -, Weighted norm inequalities of Hardy type for a class of integral operators, J. London Math. Soc. (2) 50 (1994), no. 1, 105-120. MR 1277757 (95h:47047)
  • 27. A. Kufner and G. P. Kheĭnig, The Hardy inequality for higher-order derivatives, Trudy Mat. Inst. Steklova 192 (1990), 105-113; English transl., Proc. Steklov Inst. Math. 1992, no. 3, 113-121. MR 1097892 (92e:26008)
  • 28. D. D. Haroske and L. Skrzypczak, Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I, Rev. Mat. Complut. 21 (2008), no. 1, 135-177. MR 2408040 (2009g:46060)
  • 29. -, Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III. Some limiting cases, J. Funct. Spaces Appl. 9 (2011), no. 2, 129-178. MR 2827745 (2012e:46070)
  • 30. G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., vol. 94, Cambridge Univ. Press, Cambridge, 1989. MR 1036275 (91d:52005)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 41A46

Retrieve articles in all journals with MSC (2010): 41A46


Additional Information

A. A. Vasil′eva
Affiliation: Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
Email: vasilyeva{\textunderscore}nastya@inbox.ru

DOI: https://doi.org/10.1090/S1061-0022-2012-01229-X
Keywords: Weighted Sobolev classes, Kolmogorov widths, approximation numbers
Received by editor(s): June 15, 2010
Published electronically: November 15, 2012
Additional Notes: Supported by RFBR (grants nos. 09-01-00093 and 10-01-00442)
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society