Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



The stable Calabi-Yau dimension of the preprojective algebra of type $ {\mathbf L}_n$

Author: S. O. Ivanov
Translated by: the author
Original publication: Algebra i Analiz, tom 24 (2012), nomer 3.
Journal: St. Petersburg Math. J. 24 (2013), 475-484
MSC (2010): Primary 14J35
Published electronically: March 21, 2013
MathSciNet review: 3014130
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if the characteristic of the ground field is not equal to $ 2$, then the stable Calabi-Yau dimension of the preprojective algebra of type $ {\mathbf L}_n$ is equal to $ 5$. This result contradicts certain claims by Erdmann and Skowroński related to the description of algebras whose stable Calabi-Yau dimension is $ 2$.

References [Enhancements On Off] (What's this?)

  • 1. J. Białkowski, K. Erdmann, and A. Skowroński, Deformed preprojective algebras of generalized Dynkin type, Trans. Amer. Math. Soc. 359 (2007), 2625-2650. MR 2286048 (2008d:16023)
  • 2. K. Erdmann and A. Skowroński, The stable Calabi-Yau dimension of tame symmetric algebras, J. Math. Soc. Japan 58 (2006), 97-123. MR 2204567 (2007b:16037)
  • 3. A. I. Bondal and M. M. Kapranov, Representable functions, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205; English transl., Math. USSR-Izv. 35 (1990), no. 3, 519-541. MR 1039961 (91b:14013)
  • 4. B. Keller, Calabi-Yau triangulated categories, Trends in Representation Theory of Algebras and Related Topics, (A. Skowroński, ed.), EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 467-489. MR 2484733 (2010b:18018)
  • 5. M. Kontsevich, Triangulated categories and geometry, Course at the École Normale Supérieure, Paris, Notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, 1998.
  • 6. D. Happel, U. Preiser, and C. M. Ringel, Binary polyhedral groups and Euclidean diagrams, Manuscripta Math. 31 (1980), 317-329. MR 576503 (82g:20019)
  • 7. E. A. Juan, The Hochschild cohomology ring of preprojective algebras of type $ {\mathbf L}_n$, arXiv: 1010.2790v1
  • 8. M. Auslander, I. Reiten, and S. O. Smalø, Representation theory of Artin algebras, Cambridge Stud. in Adv. Math., vol. 36, Cambridge Univ. Press, 1995. MR 1314422 (96c:16015)
  • 9. A. Heller, The loop-space functor in homological algebra, Trans. Amer. Math. Soc. 96 (1960), 382-394. MR 0116045 (22:6840)
  • 10. D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), no. 3, 339-389. MR 910167 (89c:16029)
  • 11. F. Kasch, Moduln und Rings, Teubner, Stuttgart, 1977. MR 0429963 (55:2971)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 14J35

Retrieve articles in all journals with MSC (2010): 14J35

Additional Information

S. O. Ivanov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Petrodvorets, St. Petersburg 198904, Russia
Email: sepa{\textunderscore}

Keywords: Preprojective algebras, self-injective algebras, Calabi--Yan dimension, stable category of modules
Received by editor(s): October 14, 2011
Published electronically: March 21, 2013
Additional Notes: Supported by RFBR (grant no. 10-01-00635); by targeted federal program “Scientific and Academic Specialists for Innovations in Russia” (grant nos. 2010-1.1-111-128-033, 14.740.11.0344); and by the St. Petersburg State University research program “Structure theory and geometry of algebraic groups and their applications in representation theory and algebraic K-theory”.
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society