Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 


On tight spherical designs

Authors: G. Nebe and B. Venkov
Original publication: Algebra i Analiz, tom 24 (2012), nomer 3.
Journal: St. Petersburg Math. J. 24 (2013), 485-491
MSC (2010): Primary 05B30, 51E30
Published electronically: March 21, 2013
MathSciNet review: 3014131
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a tight $ t$-design of dimension $ n$, and let $ t=5$ or $ t=7$ (the open cases). An investigation of the lattice generated by $ X$ by using arithmetic theory of quadratic forms allows one to exclude infinitely many values of $ n$.

References [Enhancements On Off] (What's this?)

  • 1. E. Bannai and R. M. Damerell, Tight spherical designs. I, J. Math. Soc. Japan 31 (1979), 199-207. MR 519045 (80b:05014)
  • 2. E. Bannai, On tight spherical designs, J. Combin. Theory Ser. A 26 (1979), 38-47. MR 525085 (80b:05013)
  • 3. E. Bannai and R. M. Damerell, Tight spherical designs. II, J. London Math. Soc.(2) 21 (1980), 13-30. MR 576179 (81g:05024)
  • 4. E. Bannai, A.  Munemasa, and B. Venkov, The nonexistence of certain tight spherical designs, Algebra i Analiz 16 (2004), no. 4, 1-23; English transl., St. Petersburg Math. J. 16 (2005), no. 4, 609-625. MR 2090848 (2005e:05022)
  • 5. P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), 363-388. MR 0485471 (58:5302)
  • 6. W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss., Bd. 270, Springer-Verlag, Berlin, 1985. MR 770063 (86k:11022)
  • 7. B. Venkov, Réseaux et designs sphériques, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 10-86. MR 1878745 (2002m:11061)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 05B30, 51E30

Retrieve articles in all journals with MSC (2010): 05B30, 51E30

Additional Information

G. Nebe
Affiliation: Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany

B. Venkov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, Saint Petersburg 191023, Russia

Keywords: tight $t$-design, quadratic form
Received by editor(s): November 1, 2011
Published electronically: March 21, 2013
Additional Notes: Boris Venkov died in November 2011 before we could finish this paper
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society