Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Unique solvability of the Dirichlet problem for the equation $ \Delta_p u=0$ in the exterior of a paraboloid

Author: S. V. Poborchiĭ
Translated by: the author
Original publication: Algebra i Analiz, tom 24 (2012), nomer 3.
Journal: St. Petersburg Math. J. 24 (2013), 493-512
MSC (2010): Primary 46E35; Secondary 35G20
Published electronically: March 21, 2013
MathSciNet review: 3014132
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Dirichlet problem

$\displaystyle -\textup {div}(\vert\nabla u\vert^{p-2}\nabla u)=0 \ $$\displaystyle \mbox { in } \ \Omega , \ u\big \vert _{\partial \Omega }=f, $

is considered in the exterior of an $ n$-dimensional paraboloid, $ p\in (1,n)$. The space of the traces $ u\big \vert _\Gamma $ on the boundary of the paraboloid for functions $ u$ in the class $ L_p^1$ is described explicitly. This implies necessary and sufficient conditions for the existence and uniqueness of a solution to the Dirichlet problem.

References [Enhancements On Off] (What's this?)

  • 1. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Nauka, Moscow, 1973; English transl. of 1st ed., Acad. Press, New York-London, 1968. MR 0244627 (39:5941)
  • 2. M. Renardy and R. C. Rogers, An introduction to partial differential equations, Texts in Appl. Math., vol. 13, Springer-Verlag, New York, 1993. MR 1211418 (94c:35001)
  • 3. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, New York, 1993. MR 1207810 (94e:31003)
  • 4. E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $ n$ variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305. MR 0102739 (21:1525)
  • 5. N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Conf. Partial Diff. Eq. Studies in Eigenvalue Problems, Univ. of Kansas, 1955.
  • 6. V. M. Babich and L. N. Slobodetskiĭ, On boundedness of the Dirichlet integrals, Dokl. Akad. Nauk SSSR 106 (1956), no. 4, 604-606. (Russian) MR 0076886 (17:959d)
  • 7. V. G. Maz'ya and S. V. Poborchiĭ, Existence and uniqueness of an energy solution to the Dirichlet problem for the Laplace equation in the exterior of a multi-dimensional paraboloid, Problems in Mathematical Analysis, No. 53, J. Math. Sci. 172 (2011), no. 4, 532-554. MR 2839888 (2012i:35049)
  • 8. S. V. Poborchiĭ, Existence and uniquiness of a solution to the Dirichlet problem for a quasilinear equation inside and outside a paraboloid, Probl. Mat. Anal., No. 56, S.-Peterburg. Gos. Univ. , St. Petersburg, 2011, pp. 127-136; English transl., J. Math. Sci. (N.Y.) 175 (2011), no. 3, 363-374. MR 2839045 (2012k:35198)
  • 9. V. G. Maz'ya and S. V. Poborchiĭ, Unique solvability of the integral equation for harmonic simple layer potential on the boundary of a domain with a peak, Vestnik S.-Peterburg. Univ. Ser. 1 2009, vyp. 2, 63-73; English transl., Vestnik St. Petersburg Univ. Math. 42 (2009), no. 3, 185-193. MR 2531449 (2011d:31004)
  • 10. V. G. Maz'ya, Sobolev spaces, Leningrad. Gos. Univ., Leningrad, 1985; English transl., Springer-Verlag, Berlin, 1985. MR 0807364 (87g:46055); MR 0817985 (87g:46056)
  • 11. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., No. 30, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • 12. V. G. Maz'ya and S. V. Poborchiĭ, Theorems for embedding and continuation for functions in non-Lipschitzian domains, S.-Peterburg. Gos. Univ., St. Petersburg, 2006. (Russian)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 46E35, 35G20

Retrieve articles in all journals with MSC (2010): 46E35, 35G20

Additional Information

S. V. Poborchiĭ
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Petrodvorets, St. Petersburg 198904, Russia

Keywords: Dirichlet problem for an unbounded domain, a domain with infinite locally-Lipschitz boundary, traces of functions with gradient in $L_p$ on a locally-Lipschitz boundary
Received by editor(s): September 13, 2011
Published electronically: March 21, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society