Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Contents of Volume 24, Number 4

Mayer’s transfer operator approach to Selberg’s zeta function
A. Momeni and A. B. Venkov.
St. Petersburg Math. J. 24 (2013), 529-553
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088005
Elliptic solitons, Fuchsian equations, and algorithms
Yu. V. Brezhnev.
St. Petersburg Math. J. 24 (2013), 555-574
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088006
On an elliptic curve defined over $\mathbb{Q}(√-23)$
L. V. Dieulefait, M. Mink and B. Z. Moroz.
St. Petersburg Math. J. 24 (2013), 575-589
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088007
New examples of simple Jordan superalgebras over an arbitrary field of characteristic 0
V. N. Zhelyabin.
St. Petersburg Math. J. 24 (2013), 591-600
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088008
Moduli of toric tilings into bounded remainder sets and balanced words
V. G. Zhuravlev.
St. Petersburg Math. J. 24 (2013), 601-629
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088009
An operator equation characterizing the Laplacian
H. König and V. Milman.
St. Petersburg Math. J. 24 (2013), 631-644
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088010
The logic-algebraic equations method in system dynamics
N. V. Nagul.
St. Petersburg Math. J. 24 (2013), 645-662
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088011
Spectral synthesis in the space of functions of exponential growth on a finitely generated Abelian group
S. S. Platonov.
St. Petersburg Math. J. 24 (2013), 663-675
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088012
On $\mathcal{C}^{m}$-approximability of functions by polynomial solutions of elliptic equations on plane compact sets
K. Yu. Fedorovskiĭ.
St. Petersburg Math. J. 24 (2013), 677-689
Abstract, references and article information
Full-text PDF     Request Permissions   Purchase Content 
MathSciNet review: 3088013