Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

Elliptic solitons, Fuchsian equations, and algorithms


Author: Yu. V. Brezhnev
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 24 (2012), nomer 4.
Journal: St. Petersburg Math. J. 24 (2013), 555-574
MSC (2010): Primary 35C08; Secondary 35J10
Published electronically: May 24, 2013
MathSciNet review: 3088006
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown how the elliptic finite-gap potentials of the Schrödinger equation give rise to a family of solvable linear differential equations of the Fuchs class on the plane and on the torus: the latter case cannot be integrated via realizations of the Zinger-Kovacic type algorithms known in the Picard-Vessiot theory. For the arising Fuchsian equations, monodromy groups and their representations are constructed, the differential Galois group is described, together with a (recursive) method for calculation of the objects involved therein.


References [Enhancements On Off] (What's this?)

  • 1. N. I. Ahiezer, Elementy teorii ellipticheskikh funktsii, Second revised edition], Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0288319
  • 2. L. M. Berkovich, Factorization and transformations of differential equations, R&C Dynamics, Moscow, 2002. (Russian)
  • 3. A. P. Veselov and A. B. Shabat, A dressing chain and the spectral theory of the Schrödinger operator, Funktsional. Anal. i Prilozhen. 27 (1993), no. 2, 1–21, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 27 (1993), no. 2, 81–96. MR 1251164, 10.1007/BF01085979
  • 4. I. M. Gel′fand and L. A. Dikiĭ, Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Uspehi Mat. Nauk 30 (1975), no. 5(185), 67–100 (Russian). MR 0508337
  • 5. B. A. Dubrovin, Theta-functions and nonlinear equations, Uspekhi Mat. Nauk 36 (1981), no. 2(218), 11–80 (Russian). With an appendix by I. M. Krichever. MR 616797
  • 6. A. R. Its and V. B. Matveev, Schrödinger operators with the finite-band spectrum and the 𝑁-soliton solutions of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 23 (1975), no. 1, 51–68 (Russian, with English summary). MR 0479120
  • 7. E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I: Gewöhnliche Differentialgleichungen. 6. Aufl.; Teil II: Partielle Differentialgleichungen erster Ordnung für eine gesuchte Funktion. 4. Aufl, Mathematik und ihre Anwendungen in Physik und Technik. Reihe A. Bd. 18, Akademische Verlagsgesellschaft, Geest & Portig K.-G., Leipzig, 1959 (German). MR 0106302
  • 8. Irving Kaplansky, An introduction to differential algebra, Actualités Sci. Ind., No. 1251 = Publ. Inst. Math. Univ. Nancago, No. 5, Hermann, Paris, 1957. MR 0093654
  • 9. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 3rd ed., Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 14. MR 0349820
  • 10. H. Poincaré, Sur les groupes des équations linéaires, Acta Math. 4 (1884), no. 1, 201–312 (French). MR 1554639, 10.1007/BF02418420
  • 11. Yu. N. Sirota and A. O. Smirnov, The Heun equation and the Darboux transformation, Mat. Zametki 79 (2006), no. 2, 267–277 (Russian, with Russian summary); English transl., Math. Notes 79 (2006), no. 1-2, 244–253. MR 2249115, 10.1007/s11006-006-0027-5
  • 12. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469
  • 13. N. V. Ustinov and Yu. V. Brezhnev, On the Ψ-function for finite-gap potentials, Uspekhi Mat. Nauk 57 (2002), no. 1(342), 167–168 (Russian); English transl., Russian Math. Surveys 57 (2002), no. 1, 165–167. MR 1914555, 10.1070/RM2002v057n01ABEH000488
  • 14. P. B. Acosta-Humánez, Galoisian approach to supersymmetric quantum mechanics. The integrability analysis of the Schrödinger equation by means of differential Galois theory, Verlag Dr. Muller, 2010.
  • 15. Primitivo B. Acosta-Humánez, Juan J. Morales-Ruiz, and Jacques-Arthur Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), no. 3, 305–374. MR 2846216, 10.1016/S0034-4877(11)60019-0
  • 16. Acta Applicandae Mathematicae 36 (1994), 1-308 (all vol.).
  • 17. E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, and V. B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, 1994.
  • 18. Frits Beukers and Alexa van der Waall, Lamé equations with algebraic solutions, J. Differential Equations 197 (2004), no. 1, 1–25. MR 2030146, 10.1016/j.jde.2003.10.017
  • 19. F. Beukers, Unitary monodromy of Lamé differential operators, Regul. Chaotic Dyn. 12 (2007), no. 6, 630–641. MR 2373163, 10.1134/S1560354707060068
  • 20. Yurii V. Brezhnev, What does integrability of finite-gap or soliton potentials mean?, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 923–945. MR 2377680, 10.1098/rsta.2007.2056
  • 21. Yurii V. Brezhnev, Spectral/quadrature duality: Picard-Vessiot theory and finite-gap potentials, Algebraic aspects of Darboux transformations, quantum integrable systems and supersymmetric quantum mechanics, Contemp. Math., vol. 563, Amer. Math. Soc., Providence, RI, 2012, pp. 1–31. MR 2905627, 10.1090/conm/563/11162
  • 22. G. Darboux, Sur une équation linéaire, Compt. Rend. Acad. Sci. 94 (1882), no. 25, 1645-1648.
  • 23. L. A. Dickey, Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, vol. 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1964513
  • 24. J. Drach, Détermination des cas de réduction de l'équation différentielle $ \frac {d^2y}{dx^2}=[\varphi (x)+h] y$, Compt. Rend. Acad. Sci. 168 (1919), 47-50.
  • 25. Andrew Russell Forsyth, Theory of differential equations. 1. Exact equations and Pfaff’s problem; 2, 3. Ordinary equations, not linear; 4. Ordinary linear equations; 5, 6. Partial differential equations, Six volumes bound as three, Dover Publications, Inc., New York, 1959. MR 0123757
  • 26. Fritz Gesztesy and Rudi Weikard, Picard potentials and Hill’s equation on a torus, Acta Math. 176 (1996), no. 1, 73–107. MR 1395670, 10.1007/BF02547336
  • 27. Fritz Gesztesy and Rudi Weikard, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math. 181 (1998), no. 1, 63–108. MR 1654775, 10.1007/BF02392748
  • 28. Pavel Ivanov, On Lamé’s equation of a particular kind, J. Phys. A 34 (2001), no. 39, 8145–8150. MR 1871855, 10.1088/0305-4470/34/39/313
  • 29. F. Klein, Ueber lineare Differentialgleichungen der zweiten Ordnung, Vorlesung, gehalten im Sommersemester 1894, Göttingen, 1894 (manuscript).
  • 30. E. R. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1948), 1–42. MR 0024884
  • 31. Jerald J. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. 2 (1986), no. 1, 3–43. MR 839134, 10.1016/S0747-7171(86)80010-4
  • 32. Robert S. Maier, Algebraic solutions of the Lamé equation, revisited, J. Differential Equations 198 (2004), no. 1, 16–34. MR 2037748, 10.1016/j.jde.2003.06.006
  • 33. Robert S. Maier, Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1115–1153. MR 2377687, 10.1098/rsta.2007.2063
  • 34. Juan J. Morales Ruiz, Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, vol. 179, Birkhäuser Verlag, Basel, 1999. MR 1713573
  • 35. Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772
  • 36. Michael F. Singer, Liouvillian solutions of 𝑛th order homogeneous linear differential equations, Amer. J. Math. 103 (1981), no. 4, 661–682. MR 623132, 10.2307/2374045
  • 37. Michael F. Singer and Felix Ulmer, Liouvillian and algebraic solutions of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 37–73. MR 1237349, 10.1006/jsco.1993.1033
  • 38. Alexander O. Smirnov, Elliptic solitons and Heun’s equation, The Kowalevski property (Leeds, 2000) CRM Proc. Lecture Notes, vol. 32, Amer. Math. Soc., Providence, RI, 2002, pp. 287–305. MR 1916788
  • 39. Alexander O. Smirnov, Finite-gap solutions of the Fuchsian equations, Lett. Math. Phys. 76 (2006), no. 2-3, 297–316. MR 2238723, 10.1007/s11005-006-0070-x
  • 40. Kouichi Takemura, The Heun equation and the Calogero-Moser-Sutherland system. III. The finite-gap property and the monodromy, J. Nonlinear Math. Phys. 11 (2004), no. 1, 21–46. MR 2031210, 10.2991/jnmp.2004.11.1.4
  • 41. L. W. Thomé, Ueber lineare Differentialgleichungen mit mehrwerthigen algebraischen Coefficienten, J. Reine Angew. Math. 115 (1895), 33-52, 119-149; 119 (1898), 131-147.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35C08, 35J10

Retrieve articles in all journals with MSC (2010): 35C08, 35J10


Additional Information

Yu. V. Brezhnev
Affiliation: Tomsk State University, Lenin ave. 36, Tomsk 634050, Russia
Email: brezhnev@mail.ru

DOI: https://doi.org/10.1090/S1061-0022-2013-01253-2
Keywords: Elliptic solitons, Fuchsian equations, monodromy groups, integration methods, Kovacic algorithm
Received by editor(s): April 5, 2011
Published electronically: May 24, 2013
Additional Notes: Supported by the Federal Program “Scientific and pedogogical personnel of innovative Russia”, grant no. 14.B37.21.0911.
Article copyright: © Copyright 2013 American Mathematical Society