Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

Moduli of toric tilings into bounded remainder sets and balanced words


Author: V. G. Zhuravlev
Translated by: N. V. Tsilevich
Original publication: Algebra i Analiz, tom 24 (2012), nomer 4.
Journal: St. Petersburg Math. J. 24 (2013), 601-629
MSC (2010): Primary 52C22; Secondary 37B50
Published electronically: May 24, 2013
MathSciNet review: 3088009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The moduli space $ \mathcal {M}_{\mathrm {til}}$ is constructed for the family $ \mathbb{T}_{\mathrm {til}}$ of parallelotope tilings

$\displaystyle \mathbb{T}^{D}_{c,\lambda }=\mathbb{T}^{D}_0 \sqcup \mathbb{T}^{D}_1 \sqcup \dots \sqcup \mathbb{T}^{D}_D $

of the torus $ \mathbb{T}^D=\mathbb{R}^D/\mathbb{Z}^D$ of arbitrary dimension $ D$ into bounded remainder sets $ \mathbb{T}^{D}_k$. By using these tilings, the Hecke theorem on the distribution of fractional parts on the circle is extended to the tori $ \mathbb{T}^D$: the deviation of the distribution of points of an orbit with respect to the translation $ S_{\beta }\,:\, x \rightarrow x+\beta \bmod \mathbb{Z}^D$ of the torus $ \mathbb{T}^D$ by an arbitrary vector $ \beta =\frac {1}{n}(\lambda c+l)$ is estimated in terms of the moduli $ (c,\lambda )\in \mathcal {M}_{\mathrm {til}}$, where $ l$ lies in the cubic lattice $ \mathbb{Z}^D$.

The color and frequency universality is proved for the toric tilings $ \mathbb{T}^{D}_{c,\lambda }$ from the family $ \mathbb{T}_{\mathrm {til}}$ and it is shown how these tilings can be used to generate $ \kappa $-balanced words $ w$ in the alphabet $ \mathcal {A}=\{0,1, \dots ,D \}$ with $ \kappa =2$ for $ D=2$ and $ \kappa =3$ for $ D\geq 3$.


References [Enhancements On Off] (What's this?)

  • 1. Eitan Altman, Bruno Gaujal, and Arie Hordijk, Balanced sequences and optimal routing, J. ACM 47 (2000), no. 4, 752–775. MR 1866176, 10.1145/347476.347482
  • 2. E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. Eins, Math. Sem. Hamburg. Univ. 1 (1921), 54-76.
  • 3. Alex Heinis, Languages under substitutions and balanced words, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 151–172 (English, with English and French summaries). MR 2145577
  • 4. Donald E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory 32 (1986), no. 1, 51–53. MR 831559, 10.1109/TIT.1986.1057136
  • 5. Marston Morse and Gustav A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42. MR 0000745
  • 6. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), no. 2, 147–178 (French, with English summary). MR 667748
  • 7. Laurent Vuillon, Balanced words, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), no. suppl., 787–805. MR 2073026
  • 8. Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, 10.1007/BF01475864
  • 9. V. I. Arnol'd, Continued fractions, MTsNMO, Moscow, 2001. (Russian)
  • 10. V. G. Zhuravlev, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), no. Trudy po Teorii Chisel, 83–106, 253 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 137 (2006), no. 2, 4658–4672. MR 2138453, 10.1007/s10958-006-0262-z
  • 11. -, Multi-dimensional Hecke theorem on the distributions of fractional parts, Algebra i Analiz 24 (2012), no. 1, 95-130; English transl. in St. Petersburg Math. J. 24 (2013), no. 1.
  • 12. V. G. Zhuravlev, Exchanged toric developments and bounded remainder sets, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsii. 26, 95–145, 219–220 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 184 (2012), no. 6, 716–745. MR 2870222, 10.1007/s10958-012-0894-0

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 52C22, 37B50

Retrieve articles in all journals with MSC (2010): 52C22, 37B50


Additional Information

V. G. Zhuravlev
Affiliation: Vladimir State Humanitarian University, pr. Stroiteleǐ 11, Vladimir 600024, Russia
Email: vzhuravlev@mail.ru

DOI: https://doi.org/10.1090/S1061-0022-2013-01256-8
Keywords: Hecke theorem, distribution of fractional parts, bounder remainder sets on the torus
Received by editor(s): December 20, 2010
Published electronically: May 24, 2013
Additional Notes: Supported by RFBR (grant no. 11-01-00578-a)
Article copyright: © Copyright 2013 American Mathematical Society