Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

The logic-algebraic equations method in system dynamics


Author: N. V. Nagul
Translated by: the author
Original publication: Algebra i Analiz, tom 24 (2012), nomer 4.
Journal: St. Petersburg Math. J. 24 (2013), 645-662
MSC (2010): Primary 03C40; Secondary 08A99, 03C98
DOI: https://doi.org/10.1090/S1061-0022-2013-01258-1
Published electronically: May 24, 2013
MathSciNet review: 3088011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is proposed for constructing conditions that ensure the preservation of properties of many-sorted algebraic systems. The functions and relations of such systems are defined on arbitrary steps in the sense of Bourbaki. Preservation conditions are generated as solutions of logic-algebraic equations. The coupling mappings between systems have a nature of morphisms and their canonical expansions to steps. The method is illustrated by the example of analysis of a dynamical property of a discrete-event system.


References [Enhancements On Off] (What's this?)

  • 1. Nicolas Bourbaki, Elements of mathematics. Theory of sets, Translated from the French, Hermann, Publishers in Arts and Science, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0237342
  • 2. S. N. Vasil'ev, A representability method in logico-algebraic approach to qualitative analysis of dynamical systems, Optim. Upravl. Intellekt 2005, no. 3(11), 248-254. (Russian)
  • 3. S. N. Vasil′ev, A reduction method and qualitative analysis of dynamical systems. I, Izv. Ross. Akad. Nauk Teor. Sist. Upr. 1 (2006), 21–29 (Russian, with Russian summary); English transl., J. Comput. Syst. Sci. Int. 45 (2006), no. 1, 17–25. MR 2258536, https://doi.org/10.1134/S1064230706010023
    S. N. Vasil′ev, A reduction method and qualitative analysis of dynamical systems. II, Izv. Ross. Akad. Nauk Teor. Sist. Upr. 2 (2006), 5–17 (Russian, with Russian summary); English transl., J. Comput. Syst. Sci. Int. 45 (2006), no. 2, 167–179. MR 2258537, https://doi.org/10.1134/S1064230706020018
    S. N. Vasil′ev, A reduction method and qualitative analysis of dynamical systems. I, Izv. Ross. Akad. Nauk Teor. Sist. Upr. 1 (2006), 21–29 (Russian, with Russian summary); English transl., J. Comput. Syst. Sci. Int. 45 (2006), no. 1, 17–25. MR 2258536, https://doi.org/10.1134/S1064230706010023
    S. N. Vasil′ev, A reduction method and qualitative analysis of dynamical systems. II, Izv. Ross. Akad. Nauk Teor. Sist. Upr. 2 (2006), 5–17 (Russian, with Russian summary); English transl., J. Comput. Syst. Sci. Int. 45 (2006), no. 2, 167–179. MR 2258537, https://doi.org/10.1134/S1064230706020018
  • 4. S. N. Vasil′ev, The comparison method in systems analysis. I, Differentsial′nye Uravneniya 17 (1981), no. 9, 1562–1573, 1722 (Russian). MR 631770
    S. N. Vasil′ev, The comparison method in systems analysis. II, Differentsial′nye Uravneniya 17 (1981), no. 11, 1945–1954, 2108 (Russian). MR 638520
    S. N. Vasil′ev, The comparison method in systems analysis. III, Differentsial′nye Uravneniya 18 (1982), no. 2, 197–205, 363 (Russian). MR 649663
    S. N. Vasil′ev, The comparison method in systems analysis. IV, Differentsial′nye Uravneniya 18 (1982), no. 6, 938–947, 1100 (Russian). MR 663798
    S. N. Vasil′ev, The comparison method in systems analysis. I, Differentsial′nye Uravneniya 17 (1981), no. 9, 1562–1573, 1722 (Russian). MR 631770
    S. N. Vasil′ev, The comparison method in systems analysis. II, Differentsial′nye Uravneniya 17 (1981), no. 11, 1945–1954, 2108 (Russian). MR 638520
    S. N. Vasil′ev, The comparison method in systems analysis. III, Differentsial′nye Uravneniya 18 (1982), no. 2, 197–205, 363 (Russian). MR 649663
    S. N. Vasil′ev, The comparison method in systems analysis. IV, Differentsial′nye Uravneniya 18 (1982), no. 6, 938–947, 1100 (Russian). MR 663798
    S. N. Vasil′ev, The comparison method in systems analysis. I, Differentsial′nye Uravneniya 17 (1981), no. 9, 1562–1573, 1722 (Russian). MR 631770
    S. N. Vasil′ev, The comparison method in systems analysis. II, Differentsial′nye Uravneniya 17 (1981), no. 11, 1945–1954, 2108 (Russian). MR 638520
    S. N. Vasil′ev, The comparison method in systems analysis. III, Differentsial′nye Uravneniya 18 (1982), no. 2, 197–205, 363 (Russian). MR 649663
    S. N. Vasil′ev, The comparison method in systems analysis. IV, Differentsial′nye Uravneniya 18 (1982), no. 6, 938–947, 1100 (Russian). MR 663798
    S. N. Vasil′ev, The comparison method in systems analysis. I, Differentsial′nye Uravneniya 17 (1981), no. 9, 1562–1573, 1722 (Russian). MR 631770
    S. N. Vasil′ev, The comparison method in systems analysis. II, Differentsial′nye Uravneniya 17 (1981), no. 11, 1945–1954, 2108 (Russian). MR 638520
    S. N. Vasil′ev, The comparison method in systems analysis. III, Differentsial′nye Uravneniya 18 (1982), no. 2, 197–205, 363 (Russian). MR 649663
    S. N. Vasil′ev, The comparison method in systems analysis. IV, Differentsial′nye Uravneniya 18 (1982), no. 6, 938–947, 1100 (Russian). MR 663798
  • 5. -, Synthesis of theorems with VFL in mathematical systems theory, Dokt. diss., Irkutsk, 1988. (Russian)
  • 6. V. F. Zhuravlëv, \cyr Osnovy teoreticheskoĭ mekhaniki, 2nd ed., Izdatel′stvo Fiziko-Matematicheskoĭ Literatury, Moscow, 2001 (Russian, with Russian summary). MR 2057304
  • 7. A. V. Kavinov and A. P. Krishchenko, Stability of solutions in different variables, Differ. Uravn. 43 (2007), no. 11, 1470–1473, 1581–1582 (Russian, with Russian summary); English transl., Differ. Equ. 43 (2007), no. 11, 1505–1509. MR 2435951, https://doi.org/10.1134/S0012266107110043
  • 8. A. I. Mal′cev, \cyr Algebraicheskie sistemy., Posthumous edition. Edited by D. Smirnov and M. Taĭclin, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0282908
    A. I. Mal′cev, Algebraic systems, Springer-Verlag, New York-Heidelberg, 1973. Posthumous edition, edited by D. Smirnov and M. Taĭclin; Translated from the Russian by B. D. Seckler and A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 192. MR 0349384
  • 9. A. I. Mal′cev, Model correspondences, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959), 313–336 (Russian). MR 0120152
  • 10. V. M. Matrosov, The comparison method in the dynamics of systems. I, II, Differencial′nye Uravnenija 10 (1974), 1547–1559, 1730; ibid. 11 (1975), 403–417, 586 (Russian). MR 0374574
  • 11. N. V. Nagul, On the preservation of the properties of many-sorted algebraic systems, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 6 (2007), 223–241 (Russian, with English and Russian summaries). MR 2387789
  • 12. -, Preservation of properties of schedules in a model of public transport, Sovrem. Tekhnol. Sistem. Anal. Modelir. 2010, no. 4 (28), 150-159. (Russian)
  • 13. Solomon Feferman, Harmonious logic: Craig’s interpolation theorem and its descendants, Synthese 164 (2008), no. 3, 341–357. MR 2438874, https://doi.org/10.1007/s11229-008-9354-2
  • 14. Philip J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115–132. MR 0163940, https://doi.org/10.1002/mana.19630270108
  • 15. Anthony N. Michel, Kaining Wang, and Bo Hu, Qualitative theory of dynamical systems, Monographs and Textbooks in Pure and Applied Mathematics, vol. 239, Marcel Dekker, Inc., New York, 2001. The role of stability preserving mappings; Second edition, revised and expanded. MR 1816096
  • 16. S. N. Vassilyev, Machine synthesis of mathematical theorems, J. Logic Programming 9 (1990), no. 2-3, 235–266. MR 1072279, https://doi.org/10.1016/0743-1066(90)90042-4

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 03C40, 08A99, 03C98

Retrieve articles in all journals with MSC (2010): 03C40, 08A99, 03C98


Additional Information

N. V. Nagul
Affiliation: Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Lermontova str. 134, Irkutsk, Russia
Email: sapling@icc.ru

DOI: https://doi.org/10.1090/S1061-0022-2013-01258-1
Keywords: Property preservation, many-sorted algebra, discrete-event system
Received by editor(s): April 1, 2007
Published electronically: May 24, 2013
Additional Notes: Supported by RFBR (grants nos. 12-08-90018-Bel-a and no. 11-07-00655-a) and by the Project no. 10 of the Presidium of SB RAS
Article copyright: © Copyright 2013 American Mathematical Society