Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

On $ \mathcal{C}^m$-approximability of functions by polynomial solutions of elliptic equations on plane compact sets


Author: K. Yu. Fedorovskiĭ
Translated by: the author
Original publication: Algebra i Analiz, tom 24 (2012), nomer 4.
Journal: St. Petersburg Math. J. 24 (2013), 677-689
MSC (2010): Primary 30E10, 41A30; Secondary 35J99
Published electronically: May 24, 2013
MathSciNet review: 3088013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions of $ \mathcal {C}^m$-approximability of functions by polynomial solutions of homogeneous elliptic equations of order $ n$ on plane compact sets are studied. For positive integers $ m$ and $ n$ such that $ m\geq n-1$, new necessary and sufficient approximability conditions of a topological and metrical nature are obtained.


References [Enhancements On Off] (What's this?)

  • 1. Mark Benevich Balk, Polyanalytic functions, Mathematical Research, vol. 63, Akademie-Verlag, Berlin, 1991. MR 1184141
  • 2. Joan Verdera, 𝐶^{𝑚} approximation by solutions of elliptic equations, and Calderón-Zygmund operators, Duke Math. J. 55 (1987), no. 1, 157–187. MR 883668, 10.1215/S0012-7094-87-05509-8
  • 3. Joan Verdera, Removability, capacity and approximation, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 419–473. MR 1332967
  • 4. P. V. Paramonov, Harmonic approximations in the 𝐶¹-norm, Mat. Sb. 181 (1990), no. 10, 1341–1365 (Russian); English transl., Math. USSR-Sb. 71 (1992), no. 1, 183–207. MR 1085885
  • 5. P. V. Paramonov, 𝐶^{𝑚}-approximations by harmonic polynomials on compact sets in 𝑅ⁿ, Mat. Sb. 184 (1993), no. 2, 105–128 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 231–251. MR 1214947, 10.1070/SM1994v078n01ABEH003467
  • 6. A. V. Bicadze, Kraevye zadachi dlya ellipticheskikh uravneniivtorogo poryadka, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0208152
    A. V. Bitsadze, Boundary value problems for second order elliptic equations, Translated from the Russian by Scripta Technica, Ltd. Translation edited by M. J. Laird. North-Holland Series in Applied Mathematics and Mechanics, Vol. 5, North-Holland Publishing Co., Amsterdam; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. MR 0226183
  • 7. P. V. Paramonov, Approximations by harmonic polynomials in the 𝐶¹-norm on compact sets in 𝑅², Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 2, 113–124 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 42 (1994), no. 2, 321–331. MR 1230969, 10.1070/IM1994v042n02ABEH001539
  • 8. P. V. Paramonov and K. Yu. Fedorovskiĭ, On uniform and 𝐶¹-approximability of functions on compact sets in 𝑅² by solutions of second-order elliptic equations, Mat. Sb. 190 (1999), no. 2, 123–144 (Russian, with Russian summary); English transl., Sb. Math. 190 (1999), no. 1-2, 285–307. MR 1701003, 10.1070/SM1999v190n02ABEH000386
  • 9. Konstantin Yu. Fedorovskiy, 𝐶^{𝑚}-approximation by polyanalytic polynomials on compact subsets of the complex plane, Complex Anal. Oper. Theory 5 (2011), no. 3, 671–681. MR 2836315, 10.1007/s11785-010-0099-9
  • 10. S. N. Mergelyan, Uniform approximations of functions of a complex variable, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 2(48), 31–122 (Russian). MR 0051921
  • 11. Kh. Kh. Karmona, P. V. Paramonov, and K. Yu. Fedorovskiĭ, Uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions, Mat. Sb. 193 (2002), no. 10, 75–98 (Russian, with Russian summary); English transl., Sb. Math. 193 (2002), no. 9-10, 1469–1492. MR 1937036, 10.1070/SM2002v193n10ABEH000690
  • 12. A. Buave, P. M. Got′e, and P. V. Paramonov, On uniform approximation by 𝑛-analytic functions on closed sets in ℂ, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 3, 15–28 (Russian, with Russian summary); English transl., Izv. Math. 68 (2004), no. 3, 447–459. MR 2069192, 10.1070/IM2004v068n03ABEH000484
  • 13. Joan Josep Carmona and Konstantin Yu. Fedorovskiy, Conformal maps and uniform approximation by polyanalytic functions, Selected topics in complex analysis, Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 109–130. MR 2147592, 10.1007/3-7643-7340-7_9
  • 14. Dzh. Dzh. Karmona and K. Yu. Fedorovskiĭ, On the dependence of conditions for the uniform approximability of functions by polyanalytic polynomials on the order of polyanalyticity, Mat. Zametki 83 (2008), no. 1, 32–38 (Russian, with Russian summary); English transl., Math. Notes 83 (2008), no. 1-2, 31–36. MR 2399995, 10.1134/S0001434608010045
  • 15. A. B. Zaĭtsev, On the uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact sets in ℝ², Mat. Zametki 74 (2003), no. 1, 41–51 (Russian, with Russian summary); English transl., Math. Notes 74 (2003), no. 1-2, 38–48. MR 2010675, 10.1023/A:1025010914890
  • 16. A. B. Zaĭtsev, On the uniform approximability of functions by polynomial solutions of second-order elliptic equations on planar compact sets, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 6, 85–98 (Russian, with Russian summary); English transl., Izv. Math. 68 (2004), no. 6, 1143–1156. MR 2108523, 10.1070/IM2004v068n06ABEH000512
  • 17. A. B. Zaĭtsev, Uniform approximation of second-order elliptic equations by polynomial solutions and the corresponding Dirichlet problem, Tr. Mat. Inst. Steklova 253 (2006), no. Kompleks. Anal. i Prilozh., 67–80 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2 (253) (2006), 57–70. MR 2338688
  • 18. J. F Treves, Lectures on linear partial differential equations with constant coefficients, Notas de Matemátiea, No. 27, Instituto de Matemática Pura e Aplicada do Conselho Nacional de Pesquisas, Rio de Janeiro, 1961. MR 0155078
  • 19. S. K. Smirnov and V. P. Khavin, Approximation and extension problems for some classes of vector fields, Algebra i Analiz 10 (1998), no. 3, 133–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 10 (1999), no. 3, 507–528. MR 1628034
  • 20. Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
  • 21. N. N. Tarkhanov, Ryad Lorana dlya reshenii ellipticheskikh sistem, “Nauka” Sibirsk. Otdel., Novosibirsk, 1991 (Russian, with Russian summary). MR 1226897
  • 22. A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
  • 23. Peter V. Paramonov and Joan Verdera, Approximation by solutions of elliptic equations on closed subsets of Euclidean space, Math. Scand. 74 (1994), no. 2, 249–259. MR 1298365
  • 24. M. Ya. Mazalov, A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations, Mat. Sb. 199 (2008), no. 1, 15–46 (Russian, with Russian summary); English transl., Sb. Math. 199 (2008), no. 1-2, 13–44. MR 2410145, 10.1070/SM2008v199n01ABEH003909
  • 25. Raghavan Narasimhan, Analysis on real and complex manifolds, 2nd ed., Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Advanced Studies in Pure Mathematics, Vol. 1. MR 0346855

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30E10, 41A30, 35J99

Retrieve articles in all journals with MSC (2010): 30E10, 41A30, 35J99


Additional Information

K. Yu. Fedorovskiĭ
Affiliation: Bauman Moscow State Technical University, Moscow 105005, Russia
Email: kfedorovs@yandex.ru

DOI: https://doi.org/10.1090/S1061-0022-2013-01260-X
Keywords: Homogeneous elliptic operator, $L$-analytic function, $L$-analytic polynomial, $\mathcal{C}^m$-approximation, localization operator
Received by editor(s): January 25, 2012
Published electronically: May 24, 2013
Additional Notes: The author was partially supported by RFBR (grant nos. 12-01-00434-a and 10-01-00837-a)
Article copyright: © Copyright 2013 American Mathematical Society