Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Unitary Steinberg group is centrally closed


Author: A. Lavrenov
Translated by: the author
Original publication: Algebra i Analiz, tom 24 (2012), nomer 5.
Journal: St. Petersburg Math. J. 24 (2013), 783-794
MSC (2010): Primary 19C09
DOI: https://doi.org/10.1090/S1061-0022-2013-01265-9
Published electronically: July 24, 2013
MathSciNet review: 3087823
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (R,\Lambda )$ be an arbitrary form ring, let $ U(2n,R,\Lambda )$ denote the hyperbolic unitary group, let $ EU(2n,R,\Lambda )$ be its elementary subgroup and $ \mathrm {StU} (2n,R,\Lambda )$ the unitary Steinberg group. It is proved that, if $ n\ge 5$ (a natural assumption for similar results), then every central extension of $ \mathrm {StU} (2n, R,\Lambda )$ splits. This results makes it possible to describe the Schur multiplier of the elementary unitary group as the kernel of the natural epimorphism of $ \mathrm {StU}(2n, R, \Lambda )$ onto $ EU (2n, R,\Lambda )$ if it is known that this kernel is included in the center of the unitary Steinberg group. Steinberg's description of relations is employed, which leads to simplest proofs of these results.


References [Enhancements On Off] (What's this?)

  • 1. E. V. Dybkova, Subgroups of hyperbolic unitary groups, Dokt. diss., S.-Peterburg. Gos. Univ., St. Petersburg, 2006. (Russian)
  • 2. J. Milnor, Introduction to algebraic $ K$-theory, Ann. of Math. Stud., No. 72, Princeton Univ. Press, Princeton, NJ, 1971. MR 0349811 (50:2304)
  • 3. V. A. Petrov, Odd unitary groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 305 (2003), 195-225; English transl., J. Math. Sci. (N. Y.) 130 (2005), no. 3, 4752-4766. MR 2033642 (2005b:20100)
  • 4. -, Overgroups of classical groups, Kand. diss., S.-Peterburg. Gos. Univ., St. Petersburg, 2005. (Russian)
  • 5. R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968. MR 0466335 (57:6215)
  • 6. M. S. Tulenbaev, The Schur multiplier of the group of elementary matrices of finite order, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 86 (1979), 162-169; English transl. in J. Soviet Math. 17 (1981), no. 4. MR 535488 (80j:18019)
  • 7. A. Bak, The stable structure of quadratic modules, Thesis Columbia Univ., 1969.
  • 8. -, On modules with quadratic forms, Algebraic K-Theory and Its Geometric Applications (Hull, 1969), Springer-Verlag, Berlin, 1969, pp. 55-66. MR 0252431 (40:5651)
  • 9. -, K-theory of forms, Ann. of Math. Stud., vol. 98, Princeton Univ. Press, Princeton, NJ, 1981. MR 0632404 (84m:10012)
  • 10. A. Bak and N. Vavilov, Structure of hyperbolic unitary groups. I. Elementary subgroups, Algebra Colloq. 7 (2000), no. 2, 159-196. MR 1810843 (2002b:20070)
  • 11. A. Hahn and O. O'Meara, The classical groups and K-theory, Grundlehren Math. Wiss., Bd. 291, Springer-Verlag, Berlin, 1989. MR 1007302 (90i:20002)
  • 12. R. Hazrat, Dimension theory and nonstable $ \mathrm K_1$ of quadratic modules, K-Theory 27 (2002), 293-328. MR 1962906 (2004a:19005)
  • 13. R. Hazrat and N. Vavilov, Bak's work on K-theory of rings, with an appendix by Max Karoubi, J. K-Theory 4 (2009), 1-65. MR 2538715 (2011d:19001)
  • 14. R. Hazrat, N. Vavilov, and Zuhong Zhang, Relative unitary commutator calculus, and applications, J. Algebra 343 (2011), 107-137. MR 2824547 (2012g:20093)
  • 15. W. van der Kallen, Another presentation for Steinberg groups, Indag. Math. 39 (1977), 304-312. MR 0463263 (57:3216)
  • 16. M. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004. MR 0322073 (48:437)
  • 17. A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K-Theory 19 (2000), 109-153. MR 1740757 (2000m:20076)
  • 18. Guoping Tang, Hermitian groups and K-theory, K-Theory 13 (1998), 209-267. MR 1609905 (99b:19006)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 19C09

Retrieve articles in all journals with MSC (2010): 19C09


Additional Information

A. Lavrenov
Affiliation: Department of mathematics and mechanics, St. Petersburg State University, Universitetskiĭ pr. 28, Staryi Peterhof, St. Petersburg 198504, Russia
Email: avlavrenov@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-2013-01265-9
Keywords: Unitary Steinberg group, Schur multiplier, unitary group, form parameter, nonstable $K$-theory
Received by editor(s): May 22, 2012
Published electronically: July 24, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society