Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

The fractional Riesz transform and an exponential potential


Authors: B. Jaye, F. Nazarov and A. Volberg
Original publication: Algebra i Analiz, tom 24 (2012), nomer 6.
Journal: St. Petersburg Math. J. 24 (2013), 903-938
MSC (2010): Primary 42B20
DOI: https://doi.org/10.1090/S1061-0022-2013-01272-6
Published electronically: September 23, 2013
MathSciNet review: 3097554
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the $ s$-dimensional Riesz transform of a finite measure $ \mu $ in $ \mathbf {R}^d$, with $ s\in (d-1,d)$. We show that the boundedness of the Riesz transform of $ \mu $ yields a weak type estimate for the Wolff potential $ \mathcal {W}_{\Phi ,s}(\mu )(x) = \int _0^{\infty }\Phi \bigl (\frac {\mu (B(x,r))}{r^s}\bigr ) \frac {dr}{r},$ where $ \Phi (t) = e^{-1/t^{\beta }}$ with $ \beta >0$ depending on $ s$ and $ d$. In particular, this weak type estimate implies that $ \mathcal {W}_{\Phi ,s}(\mu )$ is finite $ \mu $-almost everywhere. As an application, we obtain an upper bound for the Calderón-Zygmund capacity $ \gamma _s$ in terms of the nonlinear capacity associated to the gauge $ \Phi $. It appears to be the first result of this type for $ s>1$.


References [Enhancements On Off] (What's this?)

  • [AE] D. R. Adams and V. Y. Eiderman, Singular operators with antisymmetric kernels, related capacities, and Wolff potentials, Int. Math. Res. Notices (to appear 2012); doi:10.1093/imrn/rnr258, arXiv:1012.2877.
  • [AH] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., Bd. 314, Springer, Berlin, 1996. MR 1411441 (97j:46024)
  • [ENV1] V. Eiderman, F. Nazarov, and A. Volberg, Vector-valued Riesz potentials: Cartan-type estimates and related capacities, Proc. Lond. Math. Soc. (3) 101 (2010), no. 3, 727-758; arXiv:0801.1855. MR 2734959 (2011j:42020)
  • [ENV2] -, The $ s$-Riesz transform of an $ s$-dimensional measure in $ \mathbf {R}^2$ is unbounded for $ 1<s<2$, Preprint, 2011, arXiv:1109.2260.
  • [EV] V. Eiderman and A. Volberg, $ L^2$-norm and estimates from below for Riesz transforms on Cantor sets, in Indiana Univ. Math. J. 60 (2011), no. 3; arXiv:1012.0941.
  • [Far] H. Farag, The Riesz kernels do not give rise to higher-dimensional analogues of the Menger-Melnikov curvature, Publ. Mat. 43 (1999), no. 1, 251-260. MR 1697524 (2000g:42018)
  • [Lan] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966; English transl., Grundlehren Math. Wiss., Bd. 180, Springer-Verlag, New York-Heidelberg, 1972. MR 0214795 (35:5644); MR 0350027 (50:2520)
  • [MPV] J. Mateu, L. Prat, and J. Verdera, The capacity associated to signed Riesz kernels, and Wolff potentials, J. Reine Angew. Math. 578 (2005), 201-223; arXiv:math/0411441. MR 2113895 (2005m:31012)
  • [Mat1] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., vol. 44, Cambridge Univ. Press, Cambridge, 1995. MR 1333890 (96h:28006)
  • [Mat2] -, Cauchy singular integrals and rectifiability in measures of the plane, Adv. Math. 115 (1995), no. 1, 1-34. MR 1351323 (96h:30078)
  • [MP] P. Mattila and D. Preiss, Rectifiable measures in $ \mathbf {R}^n$ and existence of principal values for singular integrals, J. London Math. Soc. (2) 52 (1995), no. 3, 482-496. MR 1363815 (97c:28011)
  • [NPV] F. Nazarov, Y. Peres, and A. Volberg, The power law for the Buffon needle probability of the four-corner Cantor set, Algebra i Analiz 22 (2010), no. 1, 82-97; English transl., St. Petersburg Math. J. 22 (2011), no. 1, 61-72; arXiv:0801.2942. MR 2641082 (2011c:60042)
  • [NTV1] F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices 1997, no. 15, 703-726. MR 1470373 (99e:42028)
  • [NTV2] -, The $ T(b)$-theorem on nonhomogeneous spaces, Acta Math. 190 (2003), no. 2, 151-239. MR 1998349 (2005d:30053)
  • [SW] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., vol. 32, Princeton Univ. Press, Princeton, NJ, 1971. MR 0304972 (46:4102)
  • [Tao] T. Tao, A quantitative version of the Besicovitch projection theorem via multiscale analysis, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 559-584; arXiv:0706.2646. MR 2500864 (2010f:28009)
  • [Tol] X. Tolsa, Calderón-Zygmund capacities and Wolff potentials on Cantor sets, J. Geom. Anal. 21 (2011), no. 1, 195-223; arXiv:1001.2986. MR 2755682 (2012d:31012)
  • [Vih] M. Vihtilä, The boundedness of Riesz $ s$-transforms of measures in $ \mathbf {R}^n$, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3797-3804. MR 1343727 (97b:44001)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 42B20

Retrieve articles in all journals with MSC (2010): 42B20


Additional Information

B. Jaye
Affiliation: Kent State University, Department of Mathematics, Kent, Ohio 44240
Email: bjaye@kent.edu

F. Nazarov
Affiliation: Kent State University, Department of Mathematics, Kent, Ohio 44240
Email: nazarov@math.kent.edu

A. Volberg
Affiliation: Michigan State University, Department of Mathematics, East Lansing, Michigan 48824
Email: volberg@math.msu.edu

DOI: https://doi.org/10.1090/S1061-0022-2013-01272-6
Keywords: Riesz transform, Calder\'on--Zygmund capacity, nonlinear capacity, Wolff potential, totally lower irregular measure
Received by editor(s): July 11, 2012
Published electronically: September 23, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society