Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



The Maxwell system in waveguides with several cylindrical ends

Authors: B. A. Plamenevskiĭ and A. S. Poretskiĭ
Translated by: B. A. Plamenevskiĭ
Original publication: Algebra i Analiz, tom 25 (2013), nomer 1.
Journal: St. Petersburg Math. J. 25 (2014), 63-104
MSC (2010): Primary 35N25, 35Q61, 35P25, 78A50
Published electronically: November 20, 2013
MathSciNet review: 3113429
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A waveguide coincides with a domain $ G$ in $ \mathbb{R}^3$ having finitely many cylindrical outlets to infinity; the boundary $ \partial G$ is smooth. In $ G$, the stationary Maxwell system is considered with spectral parameter $ k \in \mathbb{R}$ and the identity matrices of dielectric permittivity and magnetic permeability. The boundary $ \partial G$ is assumed to be perfectly conductive. In the presence of charges and currents, the solvability is studied of the corresponding boundary value problem supplemented with ``intrinsic'' radiation conditions at infinity. For all $ k$ in the continuous spectrum of the problem (including the thresholds and eigenvalues), a basis in the space of continuous spectrum eigenfunctions is described and the scattering matrix is defined and is shown to be unitary. For this, the Maxwell system is extended to an elliptic one, and the latter is studied in detail. The information on the Maxwell boundary value problem comes from that obtained for the elliptic problem.

References [Enhancements On Off] (What's this?)

  • 1. J. D. Jackson, Classical electrodynamics, 2nd ed., J. Wiley and Sons, Inc., New York etc., 1975. MR 0436782 (55:9721)
  • 2. L. A. Vainshtein, Electromagnetic waves, Radio i Svyaz', Moscow, 1988. (Russian)
  • 3. I. S. Gudovich and S. G. Kreĭn, Boundary value problems for overdetermined systems of partial differential equations, Differ. Uravn. i Primenen. Trudy Sem., vyp. 9, Inst. Fiz. Mat. Akad. Nauk Lit. SSR, Vil'nius, 1974. (Russian) MR 0481612 (58:1720)
  • 4. S. A. Nazarov and B. A. Plamenevskiĭ, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991; English transl., de Gruyter Expositions in Math., vol. 13, Walter de Gruyter and Co., Berlin, 1994. MR 1283387 (95h:35001)
  • 5. L. A. Vainshtein, Diffraction theory and the factorization method, Sovet. Radio, Moscow, 1966. (Russian)
  • 6. R. Mittra and S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan, New York, 1971.
  • 7. E. I. Nefedov and A. T. Fialkovskiĭ, Asymptotic theory of the electromagnetic waves diffraction on finite structures, Nauka, Moscow, 1972. (Russian)
  • 8. P. E. Krasnushkin and E. I. Moiseev, The excitation of forced oscillations in a stratified radio-waveguide, Dokl. Akad. Nauk SSSR 264 (1982), no. 5, 1123-1127; English transl., Soviet Phys. Dokl. 27 (1982), no. 6, 458-460. MR 672030 (84g:78015)
  • 9. A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, On the problem of the excitation of a waveguide with a nonhomogeneous filling, Zh. Vychisl. Mat. Mat. Fiz. 39 (1999), no. 11, 1869-1888; English transl., Comput. Math. Math. Phys. 39 (1999), no. 11, 1794-1813. MR 1728974 (2000j:78008)
  • 10. -, Solvability conditions for the radio waveguide exitation problem, Dokl. Akad. Nauk 370 (2000), no. 4, 453-456; English transl., Dokl. 61 (2000), 126-129. MR 1754108 (2001h:78026)
  • 11. A. N. Vasil'ev, Classical electrodynamics, Short course of lectures, BKhV-Petersburg, St. Petersburg, 2010. (Russian)
  • 12. M. S. Agranovich and M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general type, Uspekhi Mat. Nauk 19 (1964), no. 3, 53-160; English transl. in Russian Math. Surveys 19 (1964), no. 3. MR 0192188 (33:415)
  • 13. I. Ts. Gokhberg and E. I. Sigal, On operator generalization of the logarithmic residue theorem and Rouche's theorem, Mat. Sb. (N. S.) 84 (1971), no. 4, 607-629; English transl., Math. USSR-Sb. 13 (1971), 603-625. MR 0313856 (47:2409)
  • 14. N. D. Filonov, On an equality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator, Algebra i Analiz 16 (2004), no. 2, 172-176; English tranls., St. Petersburg Math. J. 16 (2005), no. 2, 413-416. MR 2068346 (2005f:35228)
  • 15. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, T. 1, 2, 3, Travaux et Recherches Math., No. 17, 18, 20, Dunod, Paris, 1968, (T. 1, 2), 1970 (T. 3). MR 0247243 (40:512); MR 0247244 (40:513); MR 0291887 (45:975)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35N25, 35Q61, 35P25, 78A50

Retrieve articles in all journals with MSC (2010): 35N25, 35Q61, 35P25, 78A50

Additional Information

B. A. Plamenevskiĭ
Affiliation: Mathematical Physics Division, Physics Department, St. Petersburg State University, Ulianovskaya str. 3, Petrodvoretz, St. Petersburg 198504, Russia

A. S. Poretskiĭ
Affiliation: Mathematical Physics Division, Physics Department, St. Petersburg State University, Ulianovskaya str. 3, Petrodvoretz, St. Petersburg 198504, Russia

Keywords: Elliptic extension, radiation principle, eigenfunctions of continuous spectrum, unitary scattering matrix
Received by editor(s): May 28, 2012
Published electronically: November 20, 2013
Additional Notes: Supported by the Chebyshev Laboratory, St. Petersburg State University (RF Government grant 11.G34.31.0026) and by RFBR (grant no. 12-01-00247a)
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society