Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Schrödinger equations with time-dependent strong magnetic fields


Authors: D. Aiba and K. Yajima
Original publication: Algebra i Analiz, tom 25 (2013), nomer 2.
Journal: St. Petersburg Math. J. 25 (2014), 175-194
MSC (2010): Primary 35J10
DOI: https://doi.org/10.1090/S1061-0022-2014-01284-8
Published electronically: March 12, 2014
MathSciNet review: 3114848
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Time dependent $ d$-dimensional Schrödinger equations $ i\partial _t u = H(t)u$, $ H(t)=-(\partial _x-iA(t,x))^2+ V(t,x)$ are considered in the Hilbert space $ \mathcal {G}=L^2(\mathbb{R}^d)$ of square integrable functions. $ V(t,x)$ and $ A(t,x)$ are assumed to be almost critically singular with respect to the spatial variables $ x\in \mathbb{R}^d$ both locally and at infinity for the operator $ H(t)$ to be essentially selfadjoint on $ C_0^\infty (\mathbb{R}^d)$. In particular, when the magnetic fields $ B(t,x)$ produced by $ A(t,x)$ are very strong at infinity, $ V(t,x)$ can explode to the negative infinity like $ -\theta \vert B(t,x)\vert-C(\vert x\vert^2+1)$ for some $ \theta <1$ and $ C>0$. It is shown that such equations uniquely generate unitary propagators in $ \mathcal {G}$ under suitable conditions on the size and singularities of the time derivatives of the potentials $ \dot V(t,x)$ and  $ \dot A(t,x)$.


References [Enhancements On Off] (What's this?)

  • [1] H. Cycon H, R. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987. MR 883643 (88g:35003)
  • [2] A. Iwatsuka, Essential self-adjointness of the Schrödinger operators with magnetic fields diverging at infinity, Publ. Res. Inst. Math. Sci. 26 (1990), no. 5, 841-860. MR 1082319 (92b:35045)
  • [3] T. Kato, Linear evolution equations of ``hyperbolic type'', J. Fac. Sci. Univ. Tokyo, Sec. I 17 (1970), 214-258. MR 0279626 (43:5347)
  • [4] -, Linear evolution equations of ``hyperbolic type'', II, J. Math. Soc. Japan 25 (1973), 684-666. MR 0326483 (48:4827)
  • [5] -, Remarks on the essential selfadjointness and related problems for differential operators, Spectral theory of differential operators, (Birmingham, Ala., 1981), pp. 253-266, North-Holland Math. Stud., 55, North Holland, Amsterdam, 1981. MR 0640895 (83f:35081)
  • [6] -, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Serusalem, 1972), Israel J. Math. 13 (1973), 135-148. MR 0333833 (48:12155)
  • [7] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, New York-Heidelberg, 1972. MR 0350177 (50:2670)
  • [8] H. Leinfelder and C. Simader, Schrödinger operators with singular magnetic vector potentials, Math. Z. 176 (1981), no. 1, 1-19. MR 606167 (82d:35073)
  • [9] M. Reed and B. Simon, Methods of modern mathematical physics, II, Fourier analysis, self-adjointness, Acad. Press, New York-London, 1975. MR 0493420 (58:12429b)
  • [10] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), no. 3, 415-426. MR 891945 (88e:35048)
  • [11] -, Schrödinger evolution equations with magnetic fields, J. Analyse Math. 56 (1991), 29-76. MR 1243098 (94k:35270)
  • [12] -, On time dependent Schrödinger equations, Dispersive nonlinear problems in mathematical physics, 267-329, Quad. Mat., 15, Seconda Univ. Napoli, Caserta, 2004. MR 2231332 (2007c:35139)
  • [13] -, Schrödinger equations with time-dependent unbounded singular potentials, Rev. Math. Phys. 23 (2011), no. 8, 823-838. MR 2836569 (2012i:81096)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J10

Retrieve articles in all journals with MSC (2010): 35J10


Additional Information

D. Aiba
Affiliation: Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
Email: aiba@math.gakushuin.ac.jp

K. Yajima
Affiliation: Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
Email: kenji.yajima@gakushuin.ac.jp

DOI: https://doi.org/10.1090/S1061-0022-2014-01284-8
Keywords: Unitary propagator, Schr\"odinger equation, magnetic field, quantum dynamics, Stummel class, Kato class
Received by editor(s): October 20, 2012
Published electronically: March 12, 2014
Additional Notes: Supported by JSPS grant in aid for scientific research No. 22340029
Dedicated: To the memory of the late Professor Vladimir S. Buslaev
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society