Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in $ \mathbb{R}^3$

Authors: C. Ortoleva and G. Perelman
Original publication: Algebra i Analiz, tom 25 (2013), nomer 2.
Journal: St. Petersburg Math. J. 25 (2014), 271-294
MSC (2010): Primary 35Q55
Published electronically: March 12, 2014
MathSciNet review: 3114854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following energy critical focusing nonlinear Schrödinger equation in $ \mathbb{R}^3$ is considered: $ i\psi _t=-\Delta \psi -\vert\psi \vert^4\psi $; it is proved that, for any $ \nu $ and $ \alpha _0$ sufficiently small, there exist radial finite energy solutions of the form $ \psi (x,t)= e^{i\alpha (t)}\lambda ^{1/2}(t) W(\lambda (t)x)+e^{i\Delta t}\zeta ^*+o_{\dot H^1} (1)$ as $ t\rightarrow +\infty $, where $ \alpha (t)=\alpha _0\ln t$, $ \lambda (t)=t^{\nu }$, $ W(x)=(1+\frac 13\vert x\vert^2)^{-1/2}$ is the ground state, and $ \zeta ^*$ is arbitrary small in $ \dot H^1$.

References [Enhancements On Off] (What's this?)

  • 1. V. S. Buslaev and G. S. Perelman, Scattering for the nonlinear Schrödinger equation: states close to a soliton, Algebra i Analiz 4 (1992), no. 6, 63-102; English transl., St. Petersburg Math. J. 4 (1993), 1111-1142. MR 1199635 (94b:35256)
  • 2. Th. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Math., vol. 10, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003. MR 2002047 (2004j:35266)
  • 3. Th. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $ H^s$, Nonlinear Anal. 14 (1990), no. 10, 807-836. MR 1055532 (91j:35252)
  • 4. R. Donninger and J. Krieger, Nonscattering solutions and blow up at infinity for the critical wave equation, Preprint, 2012; arXiv:1201.3258.
  • 5. Th. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), no. 6, 1787-1840. MR 2491692 (2010e:35258)
  • 6. C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645-675. MR 2257393 (2007g:35232)
  • 7. J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc. 19 (2006), no. 4, 815-920. MR 2219305 (2007b:35301)
  • 8. J. Krieger, W. Schlag, and D. Tataru, Slow blow-up solutions for the $ {H}^1(\mathbb{R}^3)$ critical focusing semilinear wave equation, Duke Math. J. 147 (2009), no. 1, 1-53. MR 2494455 (2010h:58045)
  • 9. G. Perelman, Blow up dynamics for equivariant critical Schrödinger maps, Preprint, 2012.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35Q55

Retrieve articles in all journals with MSC (2010): 35Q55

Additional Information

C. Ortoleva
Affiliation: Université Paris-Est Créteil, Créteil Cedex, France

G. Perelman
Affiliation: Université Paris-Est Créteil, Créteil Cedex, France

Keywords: Energy critical focusing nonlinear Schr\"odinger equation, Cauchy problem, ground state, blow up
Received by editor(s): October 2, 2012
Published electronically: March 12, 2014
Dedicated: Dedicated to the memory of Vladimir Savelievich Buslaev
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society