Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



On strong means of spherical Fourier sums

Authors: O. I. Kuznetsova and A. N. Podkorytov
Translated by: N. V. Tsilevich
Original publication: Algebra i Analiz, tom 25 (2013), nomer 3.
Journal: St. Petersburg Math. J. 25 (2014), 447-453
MSC (2010): Primary 42B08
Published electronically: May 16, 2014
MathSciNet review: 3184600
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The spherical Fourier sums

$\displaystyle S_n(f,x)=\sum _{\Vert k\Vert\leq n}\widehat f(k)\,e^{ik\cdot x} $

of a periodic function $ f$ in $ m$ variables and their strong means

$\displaystyle H_{n,p}(f,x)=\bigg (\frac 1n\sum _{j=0}^{n-1}\vert S_j(f,x)\vert^p\bigg )^{\frac 1p} \enskip$$\displaystyle \text {for}\enskip p\geq 1 $

are considered. In contrast to the one-dimensional case treated by Hardy and Littlewood, for $ m\geq 2$ the norms $ \sup _{\vert f\vert\leq 1}H_{n,p}(f,0)$ are not bounded. The sharp order of growth of these norms is found (the upper and lower bounds differ by a factor depending only on the dimension $ m$).

References [Enhancements On Off] (What's this?)

  • 1. K. I. Babenko, On the mean convergence of multiple Fourier series and the asymptotic behaviour of the Dirichlet kernel of the spherical means, Preprint No. 52, Inst. Prikl. Mat. Akad. Nauk SSSR (1971).(Russian)
  • 2. V. A. Il′in, Localization and convergence problems for Fourier series in fundamental function systems of Laplace’s operator, Uspehi Mat. Nauk 23 (1968), no. 2 (140), 61–120 (Russian). MR 0223823
  • 3. G. H. Hardy and J. E. Littlewood, Sur la serie de Fourier d'une function á carré summable, C. R. Acad. Sci. Paris 156 (1913), 1303-1309.
  • 4. Ol′ga I. Kuznetsova, Strong spherical means and the convergence of multiple trigonometric series in 𝐿, Ukr. Mat. Visn. 3 (2006), no. 1, 46–63, 149–150 (Russian, with English and Russian summaries); English transl., Ukr. Math. Bull. 3 (2006), no. 1, 45–62. MR 2331167
  • 5. O. I. Kuznetsova, Strong spherical means and the convergence of multiple trigonometric series in 𝐿, Dokl. Akad. Nauk 391 (2003), no. 3, 303–305 (Russian). MR 2041520
  • 6. O. I. Kuznetsova, On strong means of circular Fourier partial sums, Proceedings of the Institute of Applied Mathematics and Mechanics, Vol. 5 (Russian), Tr. Inst. Prikl. Mat. Mekh., vol. 5, Nats. Akad. Nauk Ukrainy Inst. Prikl. Mat. Mekh., Donetsk, 2000, pp. 87–91 (Russian, with Russian summary). MR 1914520
  • 7. O. I. Kuznetsova, On the problem of summation over disks, Ukraïn. Mat. Zh. 48 (1996), no. 5, 629–634 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 48 (1996), no. 5, 699–705 (1997). MR 1417029,
  • 8. A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
  • 9. Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 42B08

Retrieve articles in all journals with MSC (2010): 42B08

Additional Information

O. I. Kuznetsova
Affiliation: Institute of Applied Mathematics and Mechanics, National Academy of Science of Ukraine, Roza Luksemburg, 74, 83114 Donetsk, Ukraine

A. N. Podkorytov
Affiliation: St. Petersburg State University, Universitetsky prospekt 28, Peterhof, St. Petersburg 198504, Russia

Keywords: Multiple Fourier series, spherical sums, strong means
Received by editor(s): October 5, 2012
Published electronically: May 16, 2014
Dedicated: To Boris Mikhaĭlovich Makarov
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society