Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

On subspaces generated by independent functions in symmetric spaces with the Kruglov property


Author: S. V. Astashkin
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 25 (2013), nomer 4.
Journal: St. Petersburg Math. J. 25 (2014), 513-527
MSC (2010): Primary 46E30
DOI: https://doi.org/10.1090/S1061-0022-2014-01303-9
Published electronically: June 5, 2014
MathSciNet review: 3184613
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a broad class of symmetric spaces $ X$, it is shown that the subspace generated by independent functions $ f_k$ $ (k=1,2,\dots )$ is complemented in $ X$ if and only if so is the subspace in a certain symmetric space $ Z_X^2$ on the semiaxis generated by their disjoint shifts $ \bar {f}_k(t)=f_k(t-k+1)\chi _{[k-1,k)}(t)$. Moreover, if $ \sum _{k=1}^\infty m({\mathrm {supp}}f_k)\le 1$, then $ Z_X^2$ can be replaced by $ X$ itself in the last statement. This result is new even for $ L_p$-spaces. Some consequences are deduced; in particular, it is shown that symmetric spaces enjoy an analog of the well-known Dor-Starbird theorem on the complementability in $ L_p[0,1]$ $ (1\le p<\infty )$ of the closed linear span of some independent functions under the assumption that this closed linear span is isomorphic to $ \ell _p$.


References [Enhancements On Off] (What's this?)

  • 1. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin-New York, 1979. MR 540367 (81c:46001)
  • 2. W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, 298. MR 527010 (82j:46025)
  • 3. B. S. Kashin and A. A. Saakyan, Ortogonal series, AFTs, Moscow, 1999. (Russian) MR 1845025 (2002b:42047)
  • 4. V. A. Rodin and E. M. Semenov, The complementability of a subspace that is generated by the Rademacher system in a symmetric space, Functional. Anal. i Prilozhen. 13 (1979), no. 2, 91-92. (Russian) MR 541648 (80j:46048)
  • 5. M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, Cambridge Univ. Press, Cambridge, 1994. MR 1303591 (95j:60027)
  • 6. -, On the complementability of subspaces that are generated by independent functions in a symmetric space, Functional. Anal. i Prilozhen. 16 (1982), no. 2, 66-67. (Russian) MR 659167 (84d:46028)
  • 7. L. E. Dor and T. Starbird, Projections of $ L_p$ onto subspaces spanned by independent random variables, Compositio Math. 39 (1979), no. 2, 141-175. MR 546965 (82e:46043)
  • 8. H. P. Rosenthal, On the subspaces of $ L^p\ (p>2)$ spanned by sequences of independent random variables, Israel. J. Math. 8 (1970), 273-303. MR 0271721 (42:6602)
  • 9. W. B. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, Ann. Probab. 17 (1989), no. 2, 789-808. MR 985390 (90h:60045)
  • 10. S. V. Astashkin and F. A. Sukochev, Series of zero-mean independent functions in symmetric spaces with the Kruglov property, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 345 (2007), 25-50; English transl., J. Math. Sci. (N.Y.) 148 (2008), no. 6, 795-809. MR 2432174 (2010j:60103)
  • 11. -, Independent functions and the geometry of Banach spaces, Uspekhi Mat. Nauk 65 (2010), no. 6, 3-86; English transl., Russian Math. Surveys 65 (2010), no. 6, 1003-1081. MR 2779360 (2012b:46002)
  • 12. S. V. Astashkin, On the complementability of subspaces in symmetric spaces with the Kruglov property, Functional. Anal. i Prilozen. 47 (2013), no. 2, 80-84. MR 3113871
  • 13. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of linear operators, Nauka, Moscow, 1978. (Russian) MR 506343 (81f:46086)
  • 14. L. V. Kantorovich and G. P. Akilov, Functional analysis, Nauka, Moscow, 1977. (Russian) MR 0511615 (58:23465)
  • 15. C. Bennett and R. Sharpley, Interpolation of operators, Acad. Press, Boston, 1988. MR 928802 (89e:46001)
  • 16. V. M. Kruglov, A remark on the theory of infinitely divisible laws, Teor. Verojatnost. i Primenen. 15 (1970), 330-336. MR 0272018 (42:6899)
  • 17. J. Creekmore, Type and cotype in Lorentz $ L_{p,q}$ spaces, Indag. Math. 43 (1981), no. 2, 145-152. MR 707247 (84i:46032)
  • 18. A. Kaminska and L. Maligranda, Order convexity and concavity in Lorentz spaces $ \Lambda _{p,w}$, $ 0<p<\infty $, Studia Math. 160 (2004), no. 3, 267-286. MR 2033403 (2005e:46047)
  • 19. F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. vol. 233, Springer, New York, 2006. MR 2192298 (2006h:46005)
  • 20. R. S. Elliott, Stochastic calculus and applications, Appl. Math., vol. 18, Springer-Verlag, New York, 1982. MR 678919 (85b:60059)
  • 21. N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions in Banach spaces, Nauka, Moscow, 1985. (Russian) MR 787803 (86j:60014)
  • 22. I. T. Gohberg and A. S. Markus, Stability of bases of Banach and Hilbert spaces, But. Akad. Štiince RSS Moldoven. 5 (1962), 17-35. (Russian) MR 0226365 (37:1955)
  • 23. T. Figiel, W. B. Johnson, and L. Tzafriri, On Banach lattices and spaces having local unconditional structure and applications to Lorentz function spaces, J. Approximation Theory 13 (1975), 297-312. MR 0367624 (51:3866)
  • 24. N. L. Carothers and S. J. Dilworth, Geometry of Lorentz spaces via interpolation, Texas Functiional Analysis Seminar 1985-1986 (London Notes, Univ. Texas. Austin, TX, 1986, pp. 107-134. MR 1017049 (90g:46044)
  • 25. S. J. Dilworth, Special Banach lattices and their applications, Handbook of the geometry of Banach spaces, Vol. 1, North-Holland, Amsterdam, 2001, 497-532. MR 1863700 (2003d:46027)
  • 26. M. I. Kadec and A. Pelczynski, Bases, lacunary sequences and complemented subspaces in the spaces $ L_p$, Studia Math. 21 (1962), 161-176. MR 0152879 (27:2851)
  • 27. G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subspaces of $ L_p$, $ 1<p<2$, Israel. J. Math. 26 (1977), no. 2, 178-187. MR 0435822 (55:8778)
  • 28. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in $ {\mathcal L}_p$ spaces and their applications, Studia Math. 29 (1968), 275-326. MR 0231188 (37:6743)
  • 29. L. Tzafriri, Uniqueness of structure in Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1635-1669. MR 1999605 (2004i:46020)
  • 30. L. E. Dor, On projections in $ L_1$, Ann. of Math.(2) 102 (1975), no. 3, 463-474. MR 0420244 (54:8258)
  • 31. F. L. Hernandez and E. M. Semenov, Subspaces generated by translations in rearrangement invariant spaces, J. Funct. Anal. 169 (1999), no. 1, 52-80. MR 1726747 (2001f:46041)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 46E30

Retrieve articles in all journals with MSC (2010): 46E30


Additional Information

S. V. Astashkin
Affiliation: Samara State University 1, Academician Pavlov Street, 443011 Samara, Russia
Email: astash@samsu.ru

DOI: https://doi.org/10.1090/S1061-0022-2014-01303-9
Keywords: Complemented subspace, independent functions, Rademacher functions, symmetric space, Kruglov property, Boyd indices, lower $p$-estimate
Received by editor(s): October 10, 2012
Published electronically: June 5, 2014
Additional Notes: The author was supported in part by RFBR (grant nos. 10-01-00077 and 12-01-00198)
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society