Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

On blowup dynamics in the Keller-Segel model of chemotaxis


Authors: S. I. Dejak, D. Egli, P. M. Lushnikov and I. M. Sigal
Original publication: Algebra i Analiz, tom 25 (2013), nomer 4.
Journal: St. Petersburg Math. J. 25 (2014), 547-574
MSC (2010): Primary 35K51, 35K57, 35Q84, 35Q92
DOI: https://doi.org/10.1090/S1061-0022-2014-01306-4
Published electronically: June 5, 2014
MathSciNet review: 3184616
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The (reduced) Keller-Segel equations modeling chemotaxis of bio-organisms are investigated. A formal derivation and partial rigorous results of the blowup dynamics are presented for solutions of these equations describing the chemotactic aggregation of the organisms. The results are confirmed by numerical simulations, and the formula derived coincides with the formula of Herrero and Velázquez for specially constructed solutions.


References [Enhancements On Off] (What's this?)

  • 1. M. Alber, N. Chen, T. Glimm, and P. M. Lushnikov, Multiscale dynamics of biological cells with chemotaktic interactions: from a discrete stochastic model to a continuous description, Phys. Rev. E. (3) 73 (2006), no. 5, 051901, 11 pp. MR 2242588 (2007c:92020)
  • 2. M. Alber, N. Chen, P. M. Lushnikov, and S. A. Newman, Continuous macroscopic limit of a discrete stochastic model for interaction of living cells, Phys. Rev. Lett. 99 (2007), 168102.
  • 3. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213-242. MR 1230930 (94m:58232)
  • 4. A. L. Bertozzi, J. A. Carillo, and Th. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22 (2009), no. 3, 683-710. MR 2480108 (2010b:35035)
  • 5. P. Biler, Growth and accretion of mass in an astrophysical model, Appl. Math. (Warsaw) 23 (1995), no. 2, 179-189. MR 1341221 (96i:35062)
  • 6. -, Local and global solvability of some parabolic systems modeling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), no. 2, 715-743. MR 1657160 (2001b:92046)
  • 7. P. Biler, G. Karch, and P. Laurencot, The $ 8\pi $-problem for radially symmetric solutions of a chemotaxis model in the plane, Preprint, 2006.
  • 8. P. Bizoń, Yu. N. Ovchinnikov, and I. M. Sigal, Collapse of an instanton, Nonlinearity 17 (2004), no. 4, 1179-1191. MR 2069700 (2005e:35145)
  • 9. Blanchet A., Dolbeault J., Perthame B., Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 2006, no. 44, 32 pp. (electronic). MR 2226917 (2007e:35277)
  • 10. A. Blanchet, E. Carlen, and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal. 262 (2012), no. 5, 2142-2230; arXiv:1009.0134. MR 2876403
  • 11. A. Blanchet, J. A. Carrillo, and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Diff. Equations 35 (2009), no. 2, 133-168. MR 2481820 (2010e:35149)
  • 12. A. Blanchet, J. A. Carrillo, and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $ \mathbb{R}^2$, Comm. Pure Appl. Math. 61 (2008), no. 10, 1449-1481. MR 2436186 (2009d:35132)
  • 13. A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernandez, Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, J. Math. Anal. Appl. 361 (2010), no. 2, 533-542. MR 2568716 (2010m:35190)
  • 14. J. T. Bonner, The cellular slime molds, Princeton Univ. Press, Princeton, NJ, 1967.
  • 15. M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and S. C. Venkataramani, Diffusion, attraction and collapse, Nonlinearity 12 (1999), no. 4, 1071-1098. MR 1709861 (2001d:76107)
  • 16. M. P. Brenner, L. S. Levitov, and E. O. Budrene,
    Physical mechanisms for chemotactic pattern formation by bacteria,
    Biophys. J. 74 (1998), 1677-1693.
  • 17. V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, Amer. Math. Soc. Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, 75-98. MR 1334139 (96e:35157)
  • 18. V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 3, 419-475. MR 1972870 (2004d:35229)
  • 19. E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on Sn, Geom. Funct. Anal. 2 (1992), no. 2, 90-104. MR 1143664 (93b:58170)
  • 20. E. Carlen and A. Figalli, Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation, Duke Math. J. 162 (2013), no. 3, 579-625. MR 3024094
  • 21. P. Carmeliet, Mechanisms of angiogenesis and arteriogenesis, Nat. Med. 6 (2000), 389-395.
  • 22. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 297-336. MR 2744704
  • 23. P. H. Chavanis and C. Sire, Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature, Phys. Rev. E. (3) 83 (2011), no. 3, 031131, 20 pp. MR 2788232 (2012b:82077)
  • 24. S. Childress and J. K. Percuss, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981), no. 3-4, 217-237. MR 632161 (83d:92019)
  • 25. P. Constantin, I. G. Kevrekidis, and E. S. Titi, Asymptotic states of a Smoluchowski equation, Arch. Ration. Mech. Anal. 174 (2004), no. 3, 365-384. MR 2107775 (2006d:82079)
  • 26. -, Remarks on a Smoluchowski equation, Discrete Contin. Dyn. Syst. 11 (2004), no. 1, 101-112. MR 2073948 (2005h:35142)
  • 27. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys. Springer-Verlag, Berlin, 1987. MR 883643 (88g:35003)
  • 28. S. Dejak, Z. Gang, I. M. Sigal, and S. Wang, Blow-up dynamics in nonlinear heat equations, Adv. in Appl. Math. 40, (2008), no. 4, 433-481. MR 2412155 (2009c:35243)
  • 29. S. I. Dejak, P. M. Lushnikov, Yu. N. Ovchinnikov, and I. M. Sigal, On spectra of linearized operators for Keller-Segel models of chemotaxis, Phys. D 241 (2012), no. 15, 1245-1254. MR 2930725
  • 30. M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., 19 (1981), 229-243.
  • 31. S. A. Dyachenko, P. M. Lushnikov, and N. Vladimirova, Logarithmic-type scaling of the collapse of Keller-Segel equation, AIP Conf. Proc. 1389 (2011), 709-712.
  • 32. H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr. 195 (1998), 77-114. MR 1654677 (2000a:92031)
  • 33. Zhou Gang and I. M. Sigal, On soliton dynamics in nonlinear Schrödinger equations, Geom. Funct. Anal. 16 (2006), no. 6, 1377-1390. MR 2276543 (2007k:35458)
  • 34. -, Relaxation of solitons in nonlinear Schrödinger equations with potentials, Adv. Math. 216 (2007), no. 2, 443-490. MR 2351368 (2008k:35441)
  • 35. S. Gustafson and I. M. Sigal, Mathematical concepts of quantum mechanics, Springer-Verlag, Heidelberg, 2011. MR 3012853
  • 36. M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol. 35 (1996), no. 2, 177-194. MR 1478048 (98j:35175)
  • 37. -, Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996), no. 3, 583-623. MR 1415081 (97g:35168)
  • 38. -, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 633-683. MR 1627338 (99h:92007)
  • 39. M. A. Herrero, E. Medina, and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity 10 (1997), 1739-1754. MR 1483563 (98i:35095)
  • 40. -, Self-similar blow-up for a reaction-diffusion system, J. Comput. Appl. Math. 97 (1998), no. 1-2, 99-119. MR 1651769 (99h:35100)
  • 41. T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), no. 1-2, 183-217. MR 2448428 (2009m:92017)
  • 42. D. Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results, NoDEA Nonlinear Differential Equations Appl. 8 (2001), no. 4, 399-423. MR 1867320 (2002h:35135)
  • 43. -, On the existence of radially symmetric blow-up solutions for the Keller-Segel model, J. Math. Biol. 44 (2002), no. 5, 463-478. MR 1908133 (2003c:35082)
  • 44. -, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein 105 (2003), no. 3, 103-165. MR 2013508 (2005f:35163)
  • 45. -, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein 106 (2004), no. 2, 51-69. MR 2073515 (2005b:92005)
  • 46. D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math. 12 (2001), no. 2, 159-177. MR 1931303 (2003g:35123)
  • 47. D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), no. 1, 52-107. MR 2146345 (2006f:35148)
  • 48. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Soc. 329 (1992), no. 2, 819-824. MR 1046835 (92e:35159)
  • 49. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 300-415.
  • 50. J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543-615. MR 2372807 (2009b:58061)
  • 51. -, Renormalization and blow up for critical Yang-Mills problem, e-print, 2008; arXiv:0809.211, 2008.
  • 52. R. G. Larson, The structure and rheology of complex fluids, Oxford Univ. Press, London, 1999.
  • 53. P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A 374 (2010), 1678-1685.
  • 54. P. M. Lushnikov, N. Chen, and M. Alber, Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact, Phys. Rev. E 78 (2008), no. 6, 061904, 12 pp.
  • 55. F. Merle and P. Rafael, Blow-up of the critical norm for some radial $ L2$ super critical nonlinear Schrödinger equations, Amer. J. Math. 130 (2008), no. 4, 945-978. MR 2427005 (2009f:35318)
  • 56. F. Merle and H. Zaag, Blow-up behavior outside the origin for a semilinear wave equation in the radial case, Bull. Sci. Math. 135 (2011), no. 4, 353-373. MR 2799813 (2012i:35247)
  • 57. V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42 (1973), 63-105.
  • 58. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995), no. 2, 581-601. MR 1361006 (96j:35249)
  • 59. -, Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl. 6 (2001), no. 1, 37-55. MR 1887324 (2002k:35040)
  • 60. -, Global existence and blowup of solutions to a chemotaxis system, Proc. Third World Congress of Nonlinear Analysis, Pt. 2 (Catania, 2000), Nonlinear Anal. 47 (2001), no. 2, 777-787. MR 1970697 (2004a:35127)
  • 61. T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemotaxis, Proc. Third World Congress of Nonlinear Analysis, Pt. 6 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 6, 3837-3842. MR 1602939 (99b:35198)
  • 62. -, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl. 8 (1998), no. 1, 145-146. MR 1623326 (2000a:35241)
  • 63. -, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), no. 3, 463-497. MR 1799300 (2001j:92006)
  • 64. T. Nagai, T. Senba, and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40 (1997), no. 3, 411-433. MR 1610709 (99k:92048)
  • 65. T. J. Newman and R. Grima, Many-body theory of chemotactic cell-cell interactions, Phys. Rev. E 70 (2004), no. 5, 051916, 15 pp.
  • 66. K. Oelschläger, On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes, Probab. Theory Related Fields 82 (1989), no. 4, 565-586. MR 1002901 (91c:60144)
  • 67. J. Ostriker, The equilibrium of polytropic and isotermal cylinders. Astrophys. J. 140 (1964), 1056-1066. MR 0189788 (32:7208)
  • 68. H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math. 57 (1997), no. 4, 1044-1081. MR 1462051 (99b:92001)
  • 69. Yu. N. Ovchinnikov and I. M. Sigal, On collapse of wave maps, Physica D 240 (2011), no. 17, 1311-1324. MR 2831768 (2012m:58006)
  • 70. C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338. MR 0081586 (18:424f)
  • 71. B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2007. MR 2270822 (2007j:35004)
  • 72. P. Rafael and I. Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, arXiv:0911.0692, 2010.
  • 73. M. Reed and B. Simon, Methods of modern mathematical physics. IV, Analysis of Operators. Academic Press, New-York-London, 1978. MR 0493421 (58:12429c)
  • 74. I. Rodnianski and J. Sternbenz, On the formation of singularities in the critical $ O(3)$ $ \sigma $-model, Ann. of Math. (2) 172 (2010), no. 1, 187-242. MR 2680419 (2011i:58023)
  • 75. C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations, Phys. Rev. E (3) 78 (2008), no. 6, 061111, 22 pp. MR 2546057 (2010h:82073)
  • 76. A. Soffer and I. M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys. 133 (1990), no. 1, 119-146. MR 1071238 (91h:35303)
  • 77. -, Multichannel nonlinear scattering for nonintegrable equations. II, The case of anisotropic potentials and data, J. Diff. Equations 98 (1992), no. 2, 376-390. MR 1170476 (93i:35137)
  • 78. -, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys. 16 (2004), no. 8, 977-1071; arXiv:nlin.PS/0308020 (2003). MR 2101776 (2005g:81095)
  • 79. A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math. 61 (2000), no. 1, 183-212 (electronic). MR 1776393 (2001i:92008)
  • 80. M. Struwe, Equivariant wave maps in two space dimensions. Dedicated to the memory of Sürgen K. Moser, Comm. Pure Appl. Math. 56 (2003), no. 7, 815-823. MR 1990477 (2004c:58061)
  • 81. C. Sulem and P. L. Sulem, Nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., vol. 139. Springer-Verlag, New York, 1999. MR 1696311 (2000f:35139)
  • 82. T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions, Comm. Pure Appl. Math. 55 (2002), no. 2, 153-216. MR 1865414 (2002i:35182)
  • 83. -, Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not. 2002, no. 31, 1629-1673. MR 1916427 (2004i:35292)
  • 84. -, Stable directions for excited states of nonlinear Schrödinger equations, Comm. Partial Differential Equations 27 (2002), no. 11-12, 2363-2402. MR 1944033 (2004k:35359)
  • 85. J. J. L. Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math. 62 (2002), no. 5, 1581-1633. MR 1918569 (2004e:35130)
  • 86. -, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math. 64 (2004), no. 4, 1198-1248. MR 2068667 (2005b:35114)
  • 87. G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), no. 4, 355-391. MR 1179691 (93h:82071)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35K51, 35K57, 35Q84, 35Q92

Retrieve articles in all journals with MSC (2010): 35K51, 35K57, 35Q84, 35Q92


Additional Information

S. I. Dejak
Affiliation: Department of Mathematics, University of Toronto, Toronto, Canada
Email: steven.dejak@gmail.com

D. Egli
Affiliation: Department of Mathematics, University of Toronto, Toronto, Canada
Email: daniel.egli2@gmail.com

P. M. Lushnikov
Affiliation: Department of Mathematics and Statistics, University of New Mexico
Email: plushnik@math.unm.edu

I. M. Sigal
Affiliation: Department of Mathematics, University of Toronto, Toronto, Canada
Email: im.sigal@utoronto.ca

DOI: https://doi.org/10.1090/S1061-0022-2014-01306-4
Keywords: Reaction-diffusion equations, nonlinear partial differential equations, blowup, collapse, chemotaxis, Keller--Segel equation, blowup profile
Received by editor(s): December 1, 2012
Published electronically: June 5, 2014
Additional Notes: The research of the second and fourth authors was partially supported by NSERC under Grant NA7901, and of the third author, by NSF under Grants DMS 0719895 and DMS 0807131
Dedicated: In memory of V. S. Buslaev, a scientist and a friend
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society