Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 


On the problem of the 10th discriminant

Author: I. R. Shafarevich
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 25 (2013), nomer 4.
Journal: St. Petersburg Math. J. 25 (2014), 699-711
MSC (2010): Primary 11R29
Published electronically: June 5, 2014
MathSciNet review: 3184622
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An elementary proof is given for Heegner's theorem describing imaginary quadratic fields with class number one.

References [Enhancements On Off] (What's this?)

  • 1. Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke; Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse. MR 837656
  • 2. Carl Ludwig Siegel, Gesammelte Abhandlungen. Bände I, II, III, Herausgegeben von K. Chandrasekharan und H. Maass, Springer-Verlag, Berlin-New York, 1966 (German). MR 0197270
  • 3. Serge Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964. MR 0160763
  • 4. H. Heilbronn, On the class numbers of imaginary quadratic fields, Quart. J. Math. 5 (1935), 150-160.
  • 5. Max Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl 1, Math. Z. 37 (1933), no. 1, 405–415 (German). MR 1545403, 10.1007/BF01474583
  • 6. H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. 5 (1934), 293-301.
  • 7. Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227–253 (German). MR 0053135
  • 8. H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 0222050
  • 9. A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika 15 (1968), 204–216. MR 0258756
  • 10. A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1969), 98–102. MR 0241383
  • 11. Max Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169–179 (German). MR 0228464
  • 12. B. J. Birch, Diophantine analysis and modular functions, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 35–42. MR 0258832
  • 13. Z. I. Borevich and I. R. Shafarevich, Teoriya chisel, 3rd ed., “Nauka”, Moscow, 1985 (Russian). MR 816135
  • 14. R. Füeter, Vorlesungen über die singulären Moduln und die komplexe Multiplikation der elliptischen Funktionen, Bd. 1, Teubner, Berlin, 1924.
  • 15. A. Borel, S. Chowla, C. S. Herz, K. Iwasawa, and J.-P. Serre, Seminar on complex multiplication, Seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58. Lecture Notes in Mathematics, No. 21, Springer-Verlag, Berlin-New York, 1966. MR 0201394
  • 16. A. G. Kurosh, The theory of groups. Vol. II, Chelsea Publishing Company, New York, N.Y., 1956. Translated from the Russian and edited by K. A. Hirsch. MR 0080089
  • 17. Carl Ludwig Siegel, Gesammelte Abhandlungen. Band IV, Springer-Verlag, Berlin-New York, 1979 (German). Edited by K. Chandrasekharan and H. Maass; With corrections to the first three volumes. MR 543842
  • 18. David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371
  • 19. V. A. Abraškin, Determination of the imaginary quadratic fields of class number two with even discriminant by the method of Heegner, Mat. Zametki 15 (1974), 241–246 (Russian). MR 0354608
  • 20. H. M. Stark, On complex quadratic fields wth class-number two, Math. Comp. 29 (1975), 289–302. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR 0369313, 10.1090/S0025-5718-1975-0369313-X

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11R29

Retrieve articles in all journals with MSC (2010): 11R29

Additional Information

I. R. Shafarevich
Affiliation: Steklov Mathematical Institute, Russian Academy of Sciences, 8 Gubkin str., 119991 Moscow, Russia

Keywords: Quadratic number fields, class numbers, modular functions
Received by editor(s): December 20, 2012
Published electronically: June 5, 2014
Article copyright: © Copyright 2014 American Mathematical Society