Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

On rings of commuting partial differential operators


Author: A. B. Zheglov
Translated by: the author
Original publication: Algebra i Analiz, tom 25 (2013), nomer 5.
Journal: St. Petersburg Math. J. 25 (2014), 775-814
MSC (2010): Primary 14D15, 14D20
Published electronically: July 18, 2014
MathSciNet review: 3184608
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A natural generalization is given for the classification of commutative rings of ordinary differential operators, as presented by Krichever, Mumford, Mulase. The commutative rings of operators in a completed ring of partial differential operators in two variables (satisfying certain mild conditions) are classified in terms of Parshin's generalized geometric data. This classification involves a generalization of M. Sato's theory and is constructible both ways.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
  • [2] N. Bourbaki, Éléments de mathématique, Masson, Paris, 1998 (French). Algèbre commutative. Chapitre 10. [Commutative algebra. Chapter 10]; Profondeur, régularité, dualité. [Depth, regularity, duality]. MR 2272929
  • [3] I. M. Gel′fand and L. A. Dikiĭ, Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Uspehi Mat. Nauk 30 (1975), no. 5(185), 67–100 (Russian). MR 0508337
  • [4] V. G. Drinfel′d, Commutative subrings of certain noncommutative rings, Funkcional. Anal. i Priložen. 11 (1977), no. 1, 11–14, 96 (Russian). MR 0476732
  • [5] A. B. Zheglov and A. E. Mironov, Baker-Akhiezer modules, Krichever sheaves, and commutative rings of partial differential operators, Dal′nevost. Mat. Zh. 12 (2012), no. 1, 20–34 (Russian, with English and Russian summaries). MR 2946814
  • [6] A. B. Zheglov and D. V. Osipov, On some problems associated with the Krichever correspondence, Mat. Zametki 81 (2007), no. 4, 528–539 (Russian, with Russian summary); English transl., Math. Notes 81 (2007), no. 3-4, 467–476. MR 2351858, 10.1134/S0001434607030236
  • [7] I. M. Kričever, Methods of algebraic geometry in the theory of nonlinear equations, Uspehi Mat. Nauk 32 (1977), no. 6(198), 183–208, 287 (Russian). MR 0516323
  • [8] I. M. Kričever, Commutative rings of ordinary linear differential operators, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 20–31, 96 (Russian). MR 509381
  • [9] A. E. Mironov, Commutative rings of differential operators corresponding to multidimensional algebraic varieties, Sibirsk. Mat. Zh. 43 (2002), no. 5, 1102–1114 (Russian, with Russian summary); English transl., Siberian Math. J. 43 (2002), no. 5, 888–898. MR 1946267, 10.1023/A:1020158924466
  • [10] D. V. Osipov, The Krichever correspondence for algebraic varieties, Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), no. 5, 91–128 (Russian, with Russian summary); English transl., Izv. Math. 65 (2001), no. 5, 941–975. MR 1874355, 10.1070/IM2001v065n05ABEH000358
  • [11] A. N. Parshin, On a ring of formal pseudo-differential operators, Tr. Mat. Inst. Steklova 224 (1999), no. Algebra. Topol. Differ. Uravn. i ikh Prilozh., 291–305 (Russian); English transl., Proc. Steklov Inst. Math. 1 (224) (1999), 266–280. MR 1721369
  • [12] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [13] Yuri Berest, Pavel Etingof, and Victor Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), no. 2, 279–337. MR 1980996, 10.1215/S0012-7094-03-11824-4
  • [14] A. Braverman, P. Etingof, and D. Gaitsgory, Quantum integrable systems and differential Galois theory, Transform. Groups 2 (1997), no. 1, 31–56. MR 1439245, 10.1007/BF01234630
  • [15] Pavel Etingof and Victor Ginzburg, On 𝑚-quasi-invariants of a Coxeter group, Mosc. Math. J. 2 (2002), no. 3, 555–566. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1988972
  • [16] J. L. Burchnall and T. W. Chaundy, Commutative Ordinary Differential Operators, Proc. London Math. Soc. S2-21, no. 1, 420. MR 1575373, 10.1112/plms/s2-21.1.420
  • [17] Oleg Chalykh, Algebro-geometric Schrödinger operators in many dimensions, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 947–971. MR 2377681, 10.1098/rsta.2007.2057
  • [18] M. Feigin and A. P. Veselov, Quasi-invariants of Coxeter groups and 𝑚-harmonic polynomials, Int. Math. Res. Not. 10 (2002), 521–545. MR 1883902, 10.1155/S1073792802106064
  • [19] M. Feigin and A. P. Veselov, Quasi-invariants and quantum integrals of the deformed Calogero-Moser systems, Int. Math. Res. Not. 46 (2003), 2487–2511. MR 2003602, 10.1155/S1073792803130826
  • [20] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 0163909
  • [21] Herbert Kurke, Denis Osipov, and Alexander Zheglov, Formal punctured ribbons and two-dimensional local fields, J. Reine Angew. Math. 629 (2009), 133–170. MR 2527416, 10.1515/CRELLE.2009.029
  • [22] Herbert Kurke, Denis V. Osipov, and Alexander B. Zheglov, Formal groups arising from formal punctured ribbons, Internat. J. Math. 21 (2010), no. 6, 755–797. MR 2658409, 10.1142/S0129167X10006203
  • [23] H. Kurke, D. V. Osipov, and A. B. Zheglov,  Commuting differential operators and higher-dimensional  algebraic varieties, Oberwolfach Preprint Ser., no. 2, 2012, http://www.mfo.de/scientific-programme/publications/owp.
  • [24] H. Kurke, D. V. Osipov, and A. B. Zheglov, Partial differential operators, Sato Grassmanians and non-linear partial differential equations (to appear).
  • [25] A. E. Mironov, Self-adjoint commuting differential operators and commutative subalgebras of the Weyl algebra, arXiv:math-ph/1107.3356.
  • [26] O. I. Mokhov, On commutative subalgebras of the Weyl algebra that are related to commuting operators of arbitrary rank and genus, arXiv:math-sp/1201.5979.
  • [27] Motohico Mulase, Category of vector bundles on algebraic curves and infinite-dimensional Grassmannians, Internat. J. Math. 1 (1990), no. 3, 293–342. MR 1078516, 10.1142/S0129167X90000174
  • [28] Motohico Mulase, Algebraic theory of the KP equations, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, pp. 151–217. MR 1314667
  • [29] David Mumford, The red book of varieties and schemes, Second, expanded edition, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians; With contributions by Enrico Arbarello. MR 1748380
  • [30] D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 115–153. MR 578857
  • [31] David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776
  • [32] Atsushi Nakayashiki, Commuting partial differential operators and vector bundles over abelian varieties, Amer. J. Math. 116 (1994), no. 1, 65–100. MR 1262427, 10.2307/2374982
  • [33] A. N. Parshin, Integrable systems and local fields, Comm. Algebra 29 (2001), no. 9, 4157–4181. Special issue dedicated to Alexei Ivanovich Kostrikin. MR 1857273, 10.1081/AGB-100105994
  • [34] Emma Previato, Multivariable Burchnall-Chaundy theory, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1155–1177. MR 2377688, 10.1098/rsta.2007.2064
  • [35] Mitchell Rothstein, Dynamics of the Krichever construction in several variables, J. Reine Angew. Math. 572 (2004), 111–138. MR 2076122, 10.1515/crll.2004.046
  • [36] M. Sato, Soliton equations as dynamical systems on an infinity dimensional Grassmann manifold, Res. Inst. Math. Sci. 439 (1981), 30-46.
  • [37] M. Sato and M. Noumi, Soliton equations and universal Grassmann manifold, Sophia Univ. Lec. Notes Ser. in Math., vol. 18, Sophia univ., Sophia, 1984.
  • [38] Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5–65. MR 783348
  • [39] I. Schur, Über vertauschbare lineare Differentialausdrcke, Sitzungsber. der Berliner Math. Gesel. 4 (1905), 2-8.
  • [40] Jean-Louis Verdier, Équations différentielles algébriques, Mathematics and physics (Paris, 1979/1982) Progr. Math., vol. 37, Birkhäuser Boston, Boston, MA, 1983, pp. 215–236 (French). MR 728419
  • [41] G. Wallenberg, Über die Vertauschbarkeit homogener linearer Differentialausdrücke, Archiv Math. Phys., Drittle Reihe 4 (1903), 252-268.
  • [42] Oscar Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2) 76 (1962), 560–615. MR 0141668
  • [43] A. B. Zheglov, Two dimensional KP systems and their solvability, arXiv:math-ph/0503067v2.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 14D15, 14D20

Retrieve articles in all journals with MSC (2010): 14D15, 14D20


Additional Information

A. B. Zheglov
Affiliation: Division of Differential Geometry and Applications, Department of Mathematics and Mechanics, Lomonosov Mascow State University, Leninskie gory, Moscow 119809, Russia
Email: azheglov@math.msu.su

DOI: https://doi.org/10.1090/S1061-0022-2014-01316-7
Keywords: Commuting partial differential operators; two-dimensional
Received by editor(s): August 27, 2012
Published electronically: July 18, 2014
Additional Notes: Supported by RFBR (grant no. 11-01-00145-a), by SSh (grant no. 1410.2012.1), by the National Scientific Projects (grant no. 14.740.11.0794), and by a grant of the Government of the Russian Federation for support of research projects implemented by leading scientists at Lomonosov Moscow State University under the agreement no. 11.G34.31.0054.
Article copyright: © Copyright 2014 American Mathematical Society