Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

$ L^p$ estimates for degenerate elliptic systems with VMO coefficients


Authors: G. Di Fazio, M. S. Fanciullo and P. Zamboni
Original publication: Algebra i Analiz, tom 25 (2013), nomer 6.
Journal: St. Petersburg Math. J. 25 (2014), 909-917
MSC (2010): Primary 35J47
DOI: https://doi.org/10.1090/S1061-0022-2014-01322-2
Published electronically: September 8, 2014
MathSciNet review: 3234838
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Interior $ L^p$ gradient weighted estimates are proved for degenerate elliptic systems in divergence form with VMO coefficients.


References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623-727; 17 (1964), 35-92. MR 0125307 (23:A2610); MR 0162050 (28:5252)
  • 2. M. Bramanti and L. Brandolini, $ L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc. 352 (2000), no. 2, 781-822. MR 1608289 (2000c:35026)
  • 3. M. Bramanti and M. C. Cerutti, $ W_p^{1,2}$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1735-1763. MR 1239929 (94j:35180)
  • 4. M. Bramanti and M. S. Fanciullo, BMO estimates for nonvariational operators with discontinuous coefficients structured on Hörmander vector fields on Carnot groups, Adv. Differential Equations 18 (2013), n. 9-10, 955-1004. MR 3100057
  • 5. S. Byun and L. Wang, Elliptic equations with BMO nonlinearity in Reifenberg domains, Adv. Math. 219 (2008), no. 6, 1937-1971. MR 2456271 (2010b:35152)
  • 6. S. Campanato, Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 701-707. MR 0224996 (37:595)
  • 7. S. Campanato and G. Stampacchia, Sulle maggiorazioni in $ L^p$ nella teoria delle equazioni ellittiche, Boll. Unione Mat. Ital. (3) 20 (1965), 393-399. MR 0192169 (33:396)
  • 8. F. Chiarenza and M. Franciosi, A generalization of a theorem by C. Miranda, Ann. Mat. Pura Appl. (4) 161 (1992), 285-297. MR 1174821 (93e:35024)
  • 9. F. Chiarenza, M. Franciosi, and M. Frasca, $ L^p$-estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (1994), no. 1, 27-32. MR 1273890 (95d:35040)
  • 10. F. Chiarenza, M. Frasca, and P. Longo, Interior $ W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), no. 1, 149-168. MR 1191890 (93k:35051)
  • 11. -, $ W^{2,p}$ solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), no. 2, 841-853. MR 1088476 (93f:35232)
  • 12. G. Di Fazio, $ L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Unione Mat. Ital. A (7) 10 (1996), no. 2, 409-420. MR 1405255 (97e:35034)
  • 13. G. Di Fazio and M. S. Fanciullo, Gradient estimates for elliptic systems in Carnot-Carathéodory spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 605-618. MR 2045784 (2005a:35070)
  • 14. G. Di Fazio, M. S. Fanciullo, and P. Zamboni, Harnack inequality and smoothness for quasilinear degenerate elliptic equations, J. Differential Equations 245 (2008), no. 10, 2939-2957. MR 2454808 (2010b:35155)
  • 15. -, Harnack inequality and regularity for degenerate quasilinear elliptic equations, Math. Z. 264 (2010), no. 3, 679-695. MR 2591825 (2011d:35192)
  • 16. -, Harnack inequality for a class of strongly degenerate elliptic operators formed by Hörmander vector fields, Manuscripta Math. 135 (2011), no. 3-4, 361-380. MR 2813440 (2012m:35092)
  • 17. -, Interior $ L^p$ estimates for degenerate elliptic equations in divergence form with VMO coefficients, Differential Integral Equations 25 (2012), no. 7-8, 619-628. MR 2975686
  • 18. -, Hölder regularity for non divergence form elliptic equations with discontinuous coefficients, J. Math. Anal. Appl. 407 (2013), no. 11, 545-549. MR 3071123
  • 19. -, Regularity for a class of strongly degenerate quasilinear operators, J. Differential Equations 255 (2013), no. 13, 3920-3939. MR 3097242
  • 20. G. Di Fazio, D. K. Palagachev, and M. A. Ragusa, Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (1999), no. 2, 179-196. MR 1707751 (2000d:35037)
  • 21. G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), no. 2, 241-256. MR 1213138 (94e:35035)
  • 22. G. Di Fazio and P. Zamboni, Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr. 272 (2004), 3-10. MR 2079757 (2006a:35039)
  • 23. -, Local regularity of solutions to quasilinear subelliptic equations in Carnot Carathéodory spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 9 (2006), no. 2, 485-504. MR 2233147 (2008b:35032)
  • 24. -, Regularity for quasilinear degenerate elliptic equations, Math. Z. 253 (2006), no. 4, 787-803. MR 2221099 (2007a:35035)
  • 25. -, Unique continuation for positive solutions of degenerate elliptic equations, Math. Nachr. 283 (2010), no. 7, 994-999. MR 2677283 (2011f:35087)
  • 26. E. Fabes, C. Kenig, and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. MR 643158 (84i:35070)
  • 27. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • 28. D. Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal. 39 (2007), no. 2, 489-506. MR 2338417 (2008j:35031)
  • 29. N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Stad. Math., vol. 96, Amer. Math. Soc., Providence, RI, 2008. MR 2435520 (2009k:35001)
  • 30. C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale a coefficienti discontinui, Ann. Math. Pura Appl. (4) 63 (1963), 353-386. MR 0170090 (30:331)
  • 31. D K. Palagachev, Quasilinear elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2481-2493. MR 1308019 (95k:35083)
  • 32. M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J. 113 (2002), no. 2, 385-397. MR 1909223 (2003f:35070)
  • 33. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 0377518 (51:13690)
  • 34. C. Vitanza and P. Zamboni, A variational inequality for a degenerate elliptic operator under minimal assumptions on the coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), no. 2, 341-356. MR 2339445 (2008h:35124)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J47

Retrieve articles in all journals with MSC (2010): 35J47


Additional Information

G. Di Fazio
Affiliation: Dipartimento di Matematica e Informatica, Università di Catania, V. le A. Doria, 6, 95125, Catania, Italy
Email: difazio@dmi.unict.it

M. S. Fanciullo
Affiliation: Dipartimento di Matematica e Informatica, Università di Catania, V. le A. Doria, 6, 95125, Catania, Italy
Email: fanciullo@dmi.unict.it

P. Zamboni
Affiliation: Dipartimento di Matematica e Informatica, Università di Catania, V. le A. Doria, 6, 95125, Catania, Italy
Email: zamboni@dmi.unict.it

DOI: https://doi.org/10.1090/S1061-0022-2014-01322-2
Keywords: Muckenhoupt weights, degenerate elliptic systems, VMO
Received by editor(s): January 5, 2013
Published electronically: September 8, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society