Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Independent generators of the $ K$-group of a standard two-dimensional field


Author: O. Yu. Ivanova
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 26 (2014), nomer 4.
Journal: St. Petersburg Math. J. 26 (2015), 567-592
MSC (2010): Primary 20G25
DOI: https://doi.org/10.1090/spmj/1351
Published electronically: May 6, 2015
MathSciNet review: 3289186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the $ K$-group of any standard two-dimensional field possesses a system of independent generators. Sufficient conditions for generators to be independent are obtained. For a certain class of fields, such generators are described explicitly.


References [Enhancements On Off] (What's this?)

  • 1. S. V. Vostokov, Explicit construction of the theory of class fields of a multidimensional local field, Izv. Akad. Nauk SSSR. Ser. Mat. 49 (1985), no. 2, 283-308; English transl., Izv. Math. 26 (1986), no. 2, 263-287. MR 791304 (86m:11096)
  • 2. I. B. Zhukov, Milnor and topological $ K$-groups of higher-dimensional complete fields, Algebra i Analiz 9 (1997), no. 4, 28-46; English transl., St. Petersburg Math. J. 9 (1998), no. 4, 675-693. MR 1458420 (98m:11131)
  • 3. O. Yu. Ivanova, Orders of topological generators of the $ K$-groups of a standard two-dimensional local field, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 356 (2008), 118-148; English transl.; J. Math. Sci. (N.Y.) 156 (2009), no. 6, 918-936. MR 2760367 (2011j:11225)
  • 4. I. B. Fesenko, Theory of local fields. Local class field theory. Multidimensional local class field theory, Algebra i Analiz 4 (1992), no. 3, 1-41; English transl., St. Petersburg Math. J. 4 (1993), no. 3, 403-438. MR 1190770 (93i:11138)
  • 5. I. B. Fesenko and S. V. Vostokov, Local fields and their extensions. A constructive approach, Transl. Math. Monogr., vol. 121, Amer. Math. Soc., Providence, RI, 1993. MR 1218392 (94d:11095)
  • 6. I. Fesenko, Topological Milnor $ K$-groups of higher local fields, Invitation to Higher Local Fields (Munster, 1999), Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 61-74. MR 1804920 (2001k:11247)
  • 7. H. Miki, On $ \mathbb{Z}_p$-extensions of complete $ p$-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 21 (1974), 377-393. MR 0364206 (51:461)
  • 8. A. A. Suslin, Torsion in $ K_2$ of fields, $ K$-theory 1 (1987), no. 1, 5-29. MR 899915 (89a:11123)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 20G25

Retrieve articles in all journals with MSC (2010): 20G25


Additional Information

O. Yu. Ivanova
Affiliation: St. Petersburg State University of Aerospace Engineering, Bol′shaya Morskaya str. 67, St. Petersburg 190000, Russia
Email: olgaiv80@mail.ru

DOI: https://doi.org/10.1090/spmj/1351
Keywords: Local fields, two-dimensional fields, $K$-groups
Received by editor(s): June 10, 2013
Published electronically: May 6, 2015
Additional Notes: Supported by RFBR (grant no. 11-01-00588-a)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society