Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Ramification of higher local fields, approaches and questions


Authors: L. Xiao and I. Zhukov
Original publication: Algebra i Analiz, tom 26 (2014), nomer 5.
Journal: St. Petersburg Math. J. 26 (2015), 695-740
MSC (2010): Primary 11S15
DOI: https://doi.org/10.1090/spmj/1355
Published electronically: July 27, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A survey paper that includes facts, ideas and problems related to ramification in finite extensions of complete discrete valuation fields with arbitrary residue fields. Some new results are included.


References [Enhancements On Off] (What's this?)

  • [AM] A. Abbes and A. Mokrane, Sous-groupes canoniques et cycles évanescents $ p$-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Etudes Sci. 99 (2004), 117-162. MR 2075884 (2005f:14090)
  • [AS02] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields. I, Amer. J. Math. 124 (2002), no. 5, 879-920, arXiv:math/0010103. MR 1925338 (2003m:11196)
  • [AS03] -, Ramification of local fields with imperfect residue fields. II, Kazuya Kato's fiftieth birthday, Doc. Math. 2003, Extra Vol., 5-72. (electronic) MR 2046594 (2005g:11231)
  • [AS09] -, Analyse micro-locale $ l$-adique en caracteristique $ p>0$: Le cas d'un trait, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 25-74. MR 2512777 (2009m:11197)
  • [AS11] -, Ramification and cleanliness, Tohoku Math. J. (2) 63 (2011), no. 4, 775-853. MR 2872965
  • [Abr00] V. A. Abrashkin, On a local analogue of the Grothendieck conjecture, Internat. J. Math. 11 (2000), no. 2, 133-175. MR 1754618 (2001j:12003)
  • [Abr02] -, Ramification theory for higher dimensional local fields, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., vol. 300, Amer. Math. Soc., Providence, RI, 2002, pp. 1-16. MR 1936364 (2003g:11135)
  • [Abr03] -, An analogue of Grothendieck's conjecture for two-dimensional local fields of finite characteristic, Tr. Mat. Inst. Steklov. 241 (2003), 8-42; English transl., Proc. Steklov Inst. Math. 241 (2003), 2-34. MR 2024042 (2005a:11184)
  • [Abr07] -, An analogue of the field-of-norms functor and of the Grothendieck conjecture, J. Algebraic Geom. 16 (2007), no. 4, 671-730, arXiv:math/0503200. MR 2357687 (2009b:11207)
  • [Abr10] -, Modified proof of a local analogue of the Grothendieck conjecture, J. Théor. Nombres Bordeaux 22 (2010), no. 1, 1-50, arXiv:0907.3035. MR 2675872 (2012a:11184)
  • [Ba] I. Barrientos, Log ramification via curves in rank 1, Preprint, 2013, arXiv:1307.5814.
  • [Be] P. Berthelot, Introduction à la théorie arithmétique des $ D$-modules. II, Astérisque 279 (2002), 1-80. MR 1922828 (2003i:14015)
  • [BCS] R. Boltje, G. M. Cram, and V. P. Snaith, Conductors in the non-separable residue field case, Algebraic $ K$-theory and Algebraic Topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 1-34. MR 1367290 (96k:12011)
  • [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis: a systematic approach to rigid analytic geometry, Grundlehren Math. Wiss., Bd. 261, Springer-Verlag, Berlin, 1984. MR 746961 (86b:32031)
  • [BGM] Y. Boubakri, G. -M. Greuel, and T. Markwig, Invariants of hypersurface singularities in positive characteristic, Rev. Mat. Complut. 25 (2012), no. 1, 61-85, arXiv:1005.4503. MR 2876917
  • [Bo02] J. M. Borger, Kato's conductor and generic residual perfection, Preprint, 2002, arXiv:math/ 0112306.
  • [Bo04] -, Conductors and the moduli of residual perfection, Math. Ann. 329 (2004), no. 1, 1-30, arXiv:math/0112305. MR 2052867 (2005c:11146)
  • [Br] J. -L. Brylinski, Théorie du corps de classes de Kato et revêtements abéliens de surfaces, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 23-38. MR 723946 (85f:11088)
  • [ChP] B. Chiarellotto and A. Pulita, Arithmetic and differential Swan conductors of rank one representations with finite local monodromy, Amer. J. Math. 131 (2009), no. 6, 1743-1794. MR 2567506 (2011a:14036)
  • [CuP] S. D. Cutkosky and O. Piltant, Ramification of valuations. Adv. Math. 183 (2004), no. 1, 1-79. MR 2038546 (2005g:13004)
  • [CZ] A. Campillo and I. B. Zhukov, Curve singularities and ramification of surface morphisms. (to appear)
  • [De76] P. Deligne, Letter to L. Illusie of 28.11.76. (unpublished)
  • [De84] -, Les corps locaux de caractéristique $ p$, limites de corps locaux de caractéristique 0, Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, pp. 119-157. MR 771673 (86g:11068)
  • [dS] B. de Smit, Ramification groups of local fields with imperfect residue class field, J. Number Theory 44 (1993), no. 3, 229-236. MR 1233284 (94m:11140)
  • [E] H. Epp, Eliminating wild ramification, Invent. Math. 19 (1973), 235-249. MR 0321929 (48:294)
  • [EK] H. Esnault and M. Kerz, A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Acta Math. Vietnam. 37 (2012), no. 4, 531-562. MR 3058662
  • [Fa] I. N. Faizov, Ramification jump in model extensions of degree $ p$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 413 (2013), 183-218; English transl., J. Math. Sci. (N.Y.) 202 (2014), no. 3, 455-478. MR 3073065
  • [Fe95a] I. B. Fesenko, Abelian local $ p$-class field theory, Math. Ann. 301 (1995), no. 3, 561-586. MR 1324527 (96b:11154)
  • [Fe95b] -, Hasse-Arf property and Abelian extensions, Math. Nachr. 174 (1995), 81-87. MR 1349039 (96f:11152)
  • [Fe96] -, Abelian extensions of complete discrete valuation fields, Number Theory (Paris, 1993-1994), London Math. Soc. Lecture Note Ser., vol. 235, Cambridge Univ. Press, Cambridge, 1996, 47-74. MR 1628793 (99d:11128)
  • [Fe01] -, Nonabelian local reciprocity maps, Class Field Theory - its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, 63-78. MR 1846451 (2002f:11177)
  • [Fe10] -, Analysis on arithmetic schemes. II, J. K-Theory 5 (2010), no. 3, 437-557. MR 2658047 (2011k:14019)
  • [FV] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions. A constructive approach, 2nd ed., Amer. Math. Soc., Providence, RI, 2002. MR 1915966 (2003c:11150)
  • [FW1] J. M. Fontaine and J.-P. Wintenberger, Extensions algébrique et corps des normes des extensions APF des corps locaux, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A441-A444. MR 527692 (80h:12014)
  • [FW2] -, Le ``corps des normes'' de certaines extensions algébriques de corps locaux, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, A367-A370. MR 526137 (80b:12015)
  • [Ha12] S. Hattori, Ramification correspondence of finite flat group schemes over equal and mixed characteristic local fields, J. Number Theory 132 (2012), no. 10, 2084-2102. MR 2944746
  • [Ha12+] -, On lower ramification subgroups and canonical subgroups, Algebra and Number Theory 8, (2014), no. 2, 303-330. MR 3212858
  • [HLF] I. Fesenko and M. Kurihara (eds.),Invitation to higher local fields (Münster, 1999), Geometry and Topology Monographs, vol. 3, Geom. Topol. Publ., Coventry, 2000, www.maths.warwick.ac.uk/gt/gtmcontents3.html. MR 1804915 (2001h:11005)
  • [Hi] T. Hiranouchi, Ramification of truncated discrete valuation rings: a survey, RIMS Kôkyûroku Bessatsu, B19, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, pp. 35-43. MR 2757556 (2012b:11182)
  • [HT] T. Hiranouchi and Y. Taguchi, Extensions of truncated discrete valuation rings, Pure Appl. Math. Q. 4 (2008), no. 4, 1205-1214. MR 2441698 (2009j:13026)
  • [HTT] R. Hotta, K. Takeuchi, and T. Tanisaki, $ D$-modules, perverse sheaves, and representation theory, Progr. Math., vol. 236, Birkhäuser, Boston, MA, 2008. MR 2357361 (2008k:32022)
  • [Hy] K. Hyodo, Wild ramification in the imperfect residue field case, Adv. Stud. Pure Math., vol. 12, 1987, pp. 287-314. MR 948250 (89j:11116)
  • [I08] O. Yu. Ivanova, The rank of a topological $ K$-group as a $ \mathbb{Z}\sb p$-module, Algebra i Analiz 20 (2008), no. 4, 87-117; English transl., St. Petersburg Math. J. 20 (2009), no. 4, 569-591. MR 2473745 (2009i:11142)
  • [I12a] -, On a connection between Kurihara's classification and the theory of elimination of ramificaton, Algebra i Analiz 24 (2012), no. 2, 130-153; English transl., St. Petersburg Math. J. 24 (2013), no. 2, 283-299. MR 3013329
  • [I12b] -, Kurihara's classifications and extensions of the maximal depth for multidimensional local fields, Algebra i Analiz 24, (2012), no. 6, 42-76; English transl., St. Petersburg Math. J. 24 (2013), no. 6, 877-901. MR 3097553
  • [IS] K. I. Ikeda and E. Serbest, Ramification theory in non-Abelian local class field theory, Acta Arith. 144 (2010), no. 4, 373-393. MR 2684288 (2012b:11184)
  • [Ka87] K. Kato, Vanishing cycles, ramification of valuation and class field theory, Duke Math. J. 55 (1987), no. 3, 629-659. MR 904945 (88k:11083)
  • [Ka89] -, Swan conductors for characters of degree one in the imperfect residue field case, Algebraic $ K$-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 101-131. MR 991978 (90g:11164)
  • [Ka94] -, Class field theory, $ {\mathcal D}$-modules, and ramification on higher-dimensional schemes. I, Amer. J. Math. 116 (1994), no. 4, 757-784. MR 1287939 (96f:11087)
  • [KS08] K. Kato and T. Saito, Ramification theory for varieties over a perfect field, Ann. of Math.(2) 168 (2008), no. 1, 33-96. MR 2415398 (2009h:14033)
  • [KS13] -, Ramification theory for varieties over a local field, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 1-178, arXiv:1007.0310. MR 3090259
  • [Katz] N. M. Katz, Exponential sums and differential equations, Ann. Math. Stud., vol. 124, Princeton Univ. Press, Princeton, NJ, 1990. MR 1081536 (93a:14009)
  • [Ke05] K. S. Kedlaya, Local monodromy of $ p$-adic differential equations: an overview, Int. J. Number Theory 1 (2005), no. 1, 109-154. MR 2172335 (2006g:12013)
  • [Ke06] -, Fourier transforms and $ p$-adic ``Weil II'', Compos. Math. 142 (2006), no. 6, 1426-1450. MR 2278753 (2008b:14024)
  • [Ke07] -, Swan conductors for $ p$-adic differential modules. I, A local construction, Algebra Number Theory 1 (2007), no. 3, 269-300. MR 2361935 (2009b:11205)
  • [Ke10a] -, $ p$-adic differential equations, Cambridge Stud. Adv. Math., vol. 125, Cambridge Univ. Press, Cambridge, 2010. MR 2663480 (2011m:12016)
  • [Ke10b] -, Good formal structures for flat meromorphic connections. I, Surfaces, Duke Math. J. 154 (2010), no. 2, 343-418. MR 2682186 (2011i:14041)
  • [Ke11a] -, Swan conductors for $ p$-adic differential modules. II, Global variation, J. Inst. Math. Jussieu 10 (2011), no. 1, 191-224. MR 2749575 (2012d:11231)
  • [Ke11b] -, Good formal structures for flat meromorphic connections. II, Excellent schemes, J. Amer. Math. Soc. 24 (2011), no. 1, 183-229. MR 2726603 (2011i:14042)
  • [KeX] K. S. Kedlaya and L. Xiao, Differential modules on $ p$-adic polyannuli, J. Inst. Math. Jussieu 9 (2010), no. 1, 155-201, arXiv:0804.1495. MR 2576801 (2011j:14055)
  • [Kö] B. Köck, Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves, Homology, Homotopy Appl. 7 (2005), no. 3, 83-98. MR 2205171 (2006k:14025)
  • [Kuhl] F.-V. Kuhlmann, A correction to: ``Elimination of wild ramification'' by H. P. Epp, Invent. Math. 153 (2003), no. 3, 679-681. MR 2000472 (2004g:13017)
  • [Kur] M. Kurihara, On two types of complete discrete valuation fields, Compos. Math. 63 (1987), no. 2, 237-257. MR 906373 (88k:11090)
  • [KZ] M. V. Koroteev and I. B. Zhukov, Elimination of wild ramification, Algebra i Analiz 11 (1999), no. 6, 153-177; English transl., St. Petersburg Math. J. 11 (2000), no. 6, 1063-1083. MR 1746073 (2002a:11134)
  • [La] G. Laumon, Semi-continuité du conducteur de Swan (d'après P. Deligne), Astérisque 83 (1981), 173-219. MR 629128 (83g:14007)
  • [Lo] V. G. Lomadze, On the ramification theory of two-dimensional local fields, Mat. Sb. 109 (1979), no. 3, 378-394; English transl., Sb. Math. 37 (1980), no. 3, 349-365. MR 542807 (80k:12021)
  • [MHW] A. Melle-Hernández and C. T. C. Wall, Pencils of curves on smooth surfaces, Proc. London Math. Soc. (3) 83 (2001), no. 2, 257-278. MR 1839454 (2002k:14015)
  • [Mik74] H. Miki, On $ \mathbb{Z}_p$-extensions of complete $ p$-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo Sect. 1A 21 (1974), 377-393. MR 0364206 (51:461)
  • [Mik81] -, On the ramification numbers of cyclic $ p$-extensions over local fields, J. Reine Angew. Math. 328 (1981), 99-115. MR 636198 (83k:12014)
  • [Mil] J. Milne, Étale cohomology, Princeton Math. Ser., vol. 33, Princeton Univ. Press, Princeton, 1980. MR 559531 (81j:14002)
  • [Mo-S] Sh. Mochizuki, A version of the Grothendieck conjecture for $ p$-adic local fields, Internat. J. Math. 8 (1997), no. 4, 499-506. MR 1460898 (98g:11073)
  • [Mo-T] T. Mochizuki, Wild harmonic bundles and wild pure twistor $ D$-modules, Astérisque 340 (2011). MR 2919903
  • [P] K. N. Ponomarev, Solvable elimination of ramification in extensions of discretely valued fields, Algebra i Logika 37 (1998), no. 1, 63-87; English transl., Algebra and Logic 37 (1998), no. 1, 35-47. MR 1672909 (2000a:12008)
  • [PVZ] G. K. Pak, S. V. Vostokov, and I. B. Zhukov, Extensions with almost maximal depth of ramification, Zap. Nauchn. Sem. S.-Peterburg Otdel. Mat. Inst. Steklov. (POMI) 265 (1999), 77-109; English transl., J. Math. Sci. (N.Y.) 112 (2002), no. 3, 4285-4302. MR 1757817 (2001e:11114)
  • [Sa09] T. Saito, Wild ramification and the characteristic cycle of an $ l$-adic sheaf, J. Inst. Math. Jussieu 8 (2009), no. 4, 769-829, arXiv:0705.2799. MR 2540880 (2011e:14039)
  • [Sa10] -, Wild ramification of schemes and sheaves, Proc. Int. Congress of Mathematicians (ICM 2010). Vol. II, Invited lectures, World Sci., Hackensack, NJ, 2011, pp. 335-356. MR 2827799 (2012h:14042)
  • [Sa12] -, Ramification of local fields with imperfect residue fields. III, Math. Ann.  352 (2012), no. 3, 567-580, arXiv:1005.2824. MR 2885588
  • [Sch] A. J. Scholl, Higher fields of norms and $ (\phi ,\Gamma )$-modules, Doc. Math. 2006, Extra Vol., 685-709. (electronic) MR 2290602 (2007k:11199)
  • [Se68] J. -P. Serre, Corps locaux, 2nd ed., Hermann, Paris, 1968. MR 0354618 (50:7097)
  • [Se77] -, Linear representations of finite groups, Grad. Texts in Math., vol. 42, Springer-Verlag, New York-Heidelberg, 1977. MR 0450380 (56:8675)
  • [Sn] V. P. Snaith, Explicit Brauer induction, Cambridge Stud. Adv. Math., vol. 40, Cambridge Univ. Press, Cambridge, 1994. MR 1310780 (96e:20012)
  • [Sp99] L. Spriano, Well and fiercely ramified extensions of complete discrete valuation fields, with applications to the Kato conductor, Thèse à l'Université Bordeaux I, 1999. MR 1794305 (2001j:11109)
  • [Sp00] -, Well ramified extensions of complete discrete valuation fields with applications to the Kato conductor, Canad. J. Math. 52 (2000), no. 6, 1269-1309. MR 1794305 (2001j:11109)
  • [Th] L. Thomas, Ramification groups in Artin-Schreier-Witt extensions, J. Théor. Nombres Bordeaux 17 (2005), no. 2, 689-720. MR 2211314 (2007a:11157)
  • [Ti] Y. Tian, Canonical subgroups of Barsotti-Tate groups, Ann. of Math. (2) 172 (2010), no. 2, 955-988. MR 2680485 (2012a:14105)
  • [VZ] S. V. Vostokov and I. B. Zhukov, Some approaches to the construction of Abelian extensions for $ {\mathfrak{p}}$-adic fields, Tr. S.-Peterburg. Mat. Obshch. 3 (1995), 194-214; English transl., Proc. St. Petersburg Math. Soc., vol. 3, Amer. Math. Soc., Providence, RI, 1995, pp. 157-174. MR 1363296 (97e:11149)
  • [We] S. Wewers, Fiercely ramified cyclic extensions of $ p$-adic fields with imperfect residue field, Manuscripta Math. 143 (2014), no. 3-4, 445-472. MR 3167623
  • [Wh] W. A. Whitney, Functorial Cohen rings, PhD thesis, Univ. California, Berkeley, 2002. MR 2707613
  • [X10] L. Xiao, On ramification filtrations and $ p$-adic differential equations. I, Equal characteristic case, Algebra Number Theory 4 (2010), no. 8, 969-1027, arXiv:0801.4962. MR 2832631
  • [X12a] -, On Ramification Filtrations and $ p$-adic Differential Equations. II, Mixed characteristic case, Compos. Math.  148 (2012), no. 2, 415-463, MR 2904193
  • [X12b] -, On refined ramification filtrations in the equal characteristic case, Algebra Number Theory 6 (2012), no. 8, 1579-1667, arXiv:0911.1802. MR 3033523
  • [X12+] -, Cleanness and log-characteristic cycles, I: vector bundles with flat connections, Math. Ann. (to appear); arXiv:1104.1224.
  • [Z95] I. B. Zhukov, A structure theorem for complete fields, S.-Peterburg. Mat. Obshch.  3 (1995), 215-234; English transl., Proc. St. Petersburg Math Soc., vol. 3, Amer. Math. Soc., Providence, RI, 1995, pp. 175-192. MR 1363297 (96m:11103)
  • [Z97] -, Milnor and topological $ K$-groups of higher-dimensional complete fields, Algebra i Analiz 9 (1997), no. 1, 98-147; English transl., St. Petersburg Math. J. 9 (1998), no. 1, 69-105. MR 1458420 (98m:11131)
  • [Z02a] -, Ramification of surfaces: Artin-Schreier extensions, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., vol. 300, Amer. Math. Soc., Providence, RI, 2002, pp. 211-220. MR 1936374 (2004c:13037)
  • [Z02b] -, Ramification of surfaces: sufficient jet order for wild jumps, Preprint, 2002, arXiv:math/0201071.
  • [Z03] -, On ramification theory in the case of an imperfect resuide field, Mat. Sb. 194 (2003), no. 12, 3-30; English transl., Sb. Math. 194 (2003), no. 11-12, 1747-1774. MR 2052694 (2005e:11158)
  • [Z06] -, Singularities of arcs and cyclic coverings of surfaces, Tr. S.-Peterburg. Mat. Obshch. 11 (2005), 59-80; English transl., Proc. St. Petersburg Math. Soc., vol. 11, Amer. Mat. Soc., Providence, RI, 2005, 49-66. MR 2279304 (2008a:11145)
  • [Z10] -, Semiglobal models of extensions of two-dimensional local fields, Vestnik S.-Petersburg Univ. Mat. 2010, vyp. 1, 39-45; English transl., Vestnik St. Petersburg Univ. Math. 43 (2010), no. 1, 33-38. MR 2662407 (2011j:13035)
  • [Z13] -, Ramification in elementary Abelian extensions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 413 (2013), 106-114; English transl., J. Math. Sci. (N.Y.) 202 (2014), no. 3, 404-409. MR 3073060
  • [Z14] -, Elementary Abelian conductor, Zap. Nauch. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 423 (2014), 126-131. (Russian)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11S15

Retrieve articles in all journals with MSC (2010): 11S15


Additional Information

L. Xiao
Affiliation: Department of Mathematics, University of Connecticut, Storrs, 196 Auditorium Road Unit 3009, Storrs, Connecticut 06269-3009
Email: lxiao@math.uconn.edu

I. Zhukov
Affiliation: Department of Mathematics and Mechanics, St.Petersburg State University, Universitetskiĭ pr. 28, Staryĭ Peterhof, 198504 St.Petersburg, Russia
Email: i.zhukov@spbu.ru

DOI: https://doi.org/10.1090/spmj/1355
Keywords: Ramification, complete discrete valuation field, two-dimensional local ring, higher local field
Received by editor(s): April 25, 2014
Published electronically: July 27, 2015
Additional Notes: The first author acknowledges support from Simons Foundation #278433 and CORCL research grant from University of California, Irvine. The second author acknowledges support from RFBR (projects nos. 11-01-00588-a and 14-01-00393-a)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society