Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



On solutions and Waring's formulas for systems of $ n$ algebraic equations for $ n$ unknowns

Authors: V. R. Kulikov and V. A. Stepanenko
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 26 (2014), nomer 5.
Journal: St. Petersburg Math. J. 26 (2015), 839-848
MSC (2010): Primary 11D72
Published electronically: July 27, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A system of $ n$ algebraic equations for $ n$ unknowns is considered, in which the collection of exponents is fixed, and the coefficients are variable. Since the solutions of such systems are $ 2n$-homogeneous, two coefficients in each equation can be fixed, which makes it possible to pass to the corresponding reduced systems. For the reduced systems, a formula for the solution (and also for any monomial of the solution) is obtained in the form of a hypergeometric type series in the coefficients. Such series are represented as a finite sum of Horn's hypergeometric series: the ratios of the neighboring coefficients of the latter series are rational functions of summation variables. The study is based on the linearization procedure and on the theory of multidimensional residues. As an application of the main formula, a multidimensional analog is presented of the Waring formula for powers of the roots of the system.

References [Enhancements On Off] (What's this?)

  • 1. Hj. Mellin, Résolution de l'équation algébrique générale à l'aide de la fonction gamma, C. R. Acad. Sci. Paris Sér. I Math. 172 (1921), 658-661.
  • 2. O. N. Zhdanov and A. K. Tsikh, Investigation of multiple Mellin-Barnes integrals by means of multidimensional residues, Sibirsk. Mat. Zh. 39 (1998), no. 2, 281–298, i (Russian, with Russian summary); English transl., Siberian Math. J. 39 (1998), no. 2, 245–260. MR 1631772,
  • 3. J. Horn, Über hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 117 (1940), 384–414 (German). MR 0002403,
  • 4. Mikael Passare and August Tsikh, Algebraic equations and hypergeometric series, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 653–672. MR 2077589
  • 5. I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov, Hypergeometric functions and toric varieties, Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 12–26 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 2, 94–106. MR 1011353,
  • 6. T. M. Sadykov, On the Horn system of partial differential equations and series of hypergeometric type, Math. Scand. 91 (2002), no. 1, 127–149. MR 1917685,
  • 7. A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, vol. 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1384760
  • 8. I. A. Antipova, Inversions of multidimensional Mellin transforms and solutions of algebraic equations, Mat. Sb. 198 (2007), no. 4, 3–20 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 3-4, 447–463. MR 2352358,
  • 9. Bernd Sturmfels, Solving algebraic equations in terms of 𝒜-hypergeometric series, Discrete Math. 210 (2000), no. 1-3, 171–181. Formal power series and algebraic combinatorics (Minneapolis, MN, 1996). MR 1731613,
  • 10. A. Yu. Semusheva and A. K. Tsikh, Continuaton of Mellin's studies of solutions to algebraic equations, Complex Analysis and Differential Operators, Krasn. Gos. Univ., Krasnoyarsk, 2000. (Russian)
  • 11. Richard Birkeland, Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen, Math. Z. 26 (1927), no. 1, 566–578 (German). MR 1544875,
  • 12. I. A. Antipova and E. N. Mikhalkin, Analytic continuations of a general algebraic function by means of Puiseux series, Tr. Mat. Inst. Steklova 279 (2012), no. Analiticheskie i Geometricheskie Voprosy Kompleksnogo Analiza, 9–19 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 279 (2012), no. 1, 3–13. MR 3086754
  • 13. I. A. Antipova, An expression for the superposition of general algebraic functions in terms of hypergeometric series, Sibirsk. Mat. Zh. 44 (2003), no. 5, 972–980 (Russian, with Russian summary); English transl., Siberian Math. J. 44 (2003), no. 5, 757–764. MR 2019551,
  • 14. I. A. Antipova and A. K. Tsikh, The discriminant locus of a system of 𝑛 Laurent polynomials in 𝑛 variables, Izv. Ross. Akad. Nauk Ser. Mat. 76 (2012), no. 5, 29–56 (Russian, with Russian summary); English transl., Izv. Math. 76 (2012), no. 5, 881–906. MR 3024862,
  • 15. V. A. Stepanenko, On the solution of a system of $ n$ algebraic equations with $ n$ unknowns by means hypergeometric functions, Vestnik Krasn. Gos. Univ. Ser. Fiz. Mat. 2003, vyp. 1, 35-48. (Russian)
  • 16. L. A. Aĭzenberg and A. P. Južakov, \cyr Integral′nye predstavleniya i vychety v mnogomernom kompleksnom analize, “Nauka” Sibirsk. Otdel., Novosibirsk, 1979 (Russian). MR 566398
  • 17. A. P. Južakov, The application of the multiple logarithmic residue to the expansion of implicit functions in power series, Mat. Sb. (N.S.) 97(139) (1975), no. 2(6), 177–192, 317 (Russian). MR 0399495
  • 18. V. I. Bykov, A. M. Kytmanov, and M. Z. Lazman, Method of elimintation in computational algebra of polynomials, Nauka, Novosibirsk, 1991. (Russian)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11D72

Retrieve articles in all journals with MSC (2010): 11D72

Additional Information

V. R. Kulikov
Affiliation: Siberian Federal University, Svobodnyi pr. 79, Krasnoyarks 660041, Russia

V. A. Stepanenko
Affiliation: Siberian Federal University, Svobodnyi pr. 79, Krasnoyarks 660041, Russia

Keywords: Algebraic equations, hypergeometric functions, multidimensional logarithmic residue, power sums
Received by editor(s): August 7, 2013
Published electronically: July 27, 2015
Additional Notes: This work was done at Siberian Federal University with the support of the RF Government grant no. 14.Y26.31.0006 for studies under the guidance of leading scientists. Also, the first author was supported by RFBR (grant no. 14-01-31265)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society