Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

The arithmetic of the Lubin-Tate formal module in a multidimensional complete field


Authors: B. M. Bekker and S. V. Vostokov
Original publication: Algebra i Analiz, tom 26 (2014), nomer 6.
Journal: St. Petersburg Math. J. 26 (2015), 859-865
MSC (2010): Primary 12J10
DOI: https://doi.org/10.1090/spmj/1363
Published electronically: September 21, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the first part of the paper devoted to the derivation of an explicit formula for the Hilbert symbol in a complete multidimensional field, primary elements and the Shafarevich basis for Lubin-Tate formal modules are constructed, which is the crucial point in the construction of explicit formulas.


References [Enhancements On Off] (What's this?)

  • [Vost] S. V. Vostokov, Normed pairing in formal modules, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 765-794; English transl., Math. USSR-Izv. 15 (1980), no. 1, 25-51. MR 548504 (81b:12017)
  • [Vost1] -, On I. Shafarevich's paper ``A general reciprocity law'', Mat. Sb. 204 (2013), no. 3-22; English transl., Sb. Math. 204 (2013), no. 5-6, 781-800. MR 3113452
  • [Vost2] -, An explicit form of the reciprocity law, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 6, 1288-1321; English transl., Math. USSR-Izv. 13 (1979), no. 3, 557-588. MR 522940 (80f:12014)
  • [Haz] M. Hazewinkel, Formal groups and applications, Pure Appl. Math., vol. 78, Acad. Press, Inc., New York-London, 1978. MR 506881 (82a:14020)
  • [Kol] V. A. Kolyvagin, Formal groups and the norm residue symbol, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 5, 1054-1120; English transl., Math. USSR-Izv. 15 (1980), no. 2, 289-348. MR 552552 (81b:12018)
  • [Hen] K. Hensel, Die multiplikative Darstellung der algebraischen Zahlen für den Bereichenes beliebigen Primzahlen, J. Reine Angew. Math. 136 (1916), 174-183.
  • [Sha] I. R. Shafarevich, A general reciprocity law, Mat. Sb. 26 (1950), no. 1, 113-146. (Russian) MR 0031944 (11:230f)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 12J10

Retrieve articles in all journals with MSC (2010): 12J10


Additional Information

B. M. Bekker
Affiliation: Mathematics and Mechanics Department, St. Petersburg State University, Universitetskiĭ pr. 28, Petrodvorets, St. Petersburg 198504, Russia
Email: bekker.boris@gmail.com

S. V. Vostokov
Affiliation: Mathematics and Mechanics Department, St. Petersburg State University, Universitetskiĭ pr. 28, Petrodvorets, St. Petersburg 198504, Russia
Email: sergei.vostokov@gmail.com

DOI: https://doi.org/10.1090/spmj/1363
Keywords: Shafarevich generalized basis, formal group law, formal $C$-module, discrete valuation field, unramified extension
Received by editor(s): September 10, 2014
Published electronically: September 21, 2015
Additional Notes: Supported by RFBR (grant no. 14-01-00393)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society