Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Embeddings of circular orbits and the distribution of fractional parts


Author: V. G. Zhuravlev
Translated by: N. V. Tsilevich
Original publication: Algebra i Analiz, tom 26 (2014), nomer 6.
Journal: St. Petersburg Math. J. 26 (2015), 881-909
MSC (2010): Primary 11K06
DOI: https://doi.org/10.1090/spmj/1365
Published electronically: September 21, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ r_{n,\alpha } (i,t)$ be the number of points of the sequence $ \{t\}, \{\alpha +t\}, \{2\alpha +t\},\dots $ that fall into the semiopen interval $ [0, \{n\alpha \})$, where $ \{x\}$ is the fractional part of $ x$, $ n$ is an arbitrary integer, and $ t$ is any fixed number. Denote by $ \delta _{n,\alpha }(i,t)= i \{n \alpha \} - r_{n,\alpha } (i,t)$ the deviation of the expected number $ i \{n \alpha \}$ of hits of the above sequence in the semiopen interval $ [0, \{n\alpha \})$ of length $ \{n \alpha \}$ from the observed number of hits $ r_{n,\alpha } (i,t)$. E. Hecke proved the following theorem: the deviations $ \delta _{n,\alpha }(i,t)$ satisfy the inequality $ \vert\delta _{n,\alpha }(i,t)\vert\le \vert n\vert$ for all $ t\in [0,1)$ and $ i=0,1,2,\dots $. In this paper, conditions on the parameters $ n$ and $ \alpha $ are found under which $ \delta _{n,\alpha }(i, t)$ can be bounded as $ \vert\delta _{n,\alpha }(i, t)\vert< c_{\alpha }$ for a constant $ c_{\alpha }>0$ depending on $ \alpha $, as $ \vert n\vert \rightarrow \infty $ and $ n$ ranges over an infinite subset of integers. In the case where $ n$ is taken to be equal to the denominators of the convergents $ Q_m$ to $ \alpha $, the smallest values of the constants $ c_{\alpha }$ are computed. The proofs involve a new method based on embeddings of circular orbits into partitions of the unit circle.


References [Enhancements On Off] (What's this?)

  • 1. T. C. Brown and P. J-S. Shiue, Sums of fractional parts of integer multiples of an irrational, J. Number Theory 50 (1995), no. 2, 181-192. MR 1316813 (96c:11087)
  • 2. E. Hecke, Uber analytische Funktionen und die Verteilung von Zahlen mod. eins, Abh. Math. Sem. Hamburg. Univ. 1 (1921), 54-76.
  • 3. A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Hamburg 1 (1922), no. 1, 77-98. MR 3069389
  • 4. C. Pinner, On sums of fractional parts $ \{n\alpha +\gamma \}$, J. Number Theory 65 (1997), no. 1, 48-73. MR 1458202 (98d:11093)
  • 5. E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182. MR 0308032 (46:7147)
  • 6. A. A. Abrosimova and V. G. Zhuravlev, A two-dimensional generalization of Hecke's theorem and balanced words, Algebra and Number Theory: Modern Problems and Applications, Saratov Univ., Saratov, 2011, pp. 3-4. (Russian)
  • 7. V. G. Zhuravlev, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem.
    S.-Peterburg. Otdel. Math. Inst. Steklov. (POMI) 322 (2005), 83-106; English transl., J. Math. Sci. (N.Y.) 137 (2006), no. 2, 4658-4672. MR 2138453 (2006b:11094)
  • 8. -, One-dimensional Fibonacci tilings, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 2, 89-122; English tansl., Izv. Mat. 71 (2007), no. 2, 307-340. MR 2316983 (2008i:11042)
  • 9. -, Exchanged toric developments and bounded remainder sets, Zap. Nauchn. Sem.
    S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), 95-145; English transl., J. Math. Sci. (N.Y.) 184 (2012), no. 6, 716-745. MR 2870222
  • 10. -, A multidimensional Hecke theorem on the distribution of fractional parts, Algebra i Analiz 24 (2012), no. 1, 95-130; English transl., St. Petersburg Math. J. 24 (2013), no. 1, 71-97. MR 3013295
  • 11. -, Moduli of toric tilings into bounded remainder sets and balanced words, Algebra i Analiz 24 (2012), no. 4, 97-136; English transl., St. Petersburg Math. J. 240 (2013), no. 4, 601-629. MR 3088009
  • 12. -, Bounded remainder polyhedra, Sovrem. Probl. Mat. 16 (2012), 82-102; English transl., Proc. Steklov Inst. Math. 280 (2013), no. 2, 71-90.
  • 13. V. V. Krasil'shchikov, A. V. Shutov, and V. G. Zhuravlev, One-dimensional quasiperiodic tilings that admit enclosure of progressions, Izv. Vyssh. Uchebn. Zaved. Mat. 2009, no. 7, 3-9; English transl., Russian Math. (Iz. VUZ) 53 (2009), no. 7, 1-6. MR 2584200 (2010i:52030)
  • 14. N. N. Manuilov, The number of hits of points of the sequence $ \{n\tau _g\}$ in a half-interval, Chebyshevskiĭ Sb. 5 (2004), no. 3, 72-81. (Russian) MR 2280022 (2007j:11094)
  • 15. A. V. Shutov, Optimum estimates in the problem of the distribution of fractional parts of the sequence $ n\alpha $, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 2007, no. 7, 168-175. (Russian)
  • 16. -, Number systems and bounded remainder sets, Chebyshevskiĭ Sb. 7 (2006), no. 3, 110-128. (Russian) MR 2378195 (2009a:11157)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11K06

Retrieve articles in all journals with MSC (2010): 11K06


Additional Information

V. G. Zhuravlev
Affiliation: Vladimir State University, pr. Stroiteley 11, Vladimir 600024, Russia
Email: vzhuravlev@mail.ru

DOI: https://doi.org/10.1090/spmj/1365
Keywords: Hecke theorem, distribution of fractional parts, bounded remainder sets
Received by editor(s): June 25, 2013
Published electronically: September 21, 2015
Additional Notes: Supported by RFBR (grant no. 4-01-00360)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society