Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Algebraic properties of bi-polymatroidal ideals


Author: M. La Barbiera
Original publication: Algebra i Analiz, tom 26 (2014), nomer 6.
Journal: St. Petersburg Math. J. 26 (2015), 911-917
MSC (2010): Primary 13F20
DOI: https://doi.org/10.1090/spmj/1366
Published electronically: September 21, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Classes of monomial ideals are considered in the polynomial ring in two sets of variables $ R=K[X_1,\dots ,X_n;Y_1,\dots ,Y_m]$. Some algebraic properties of bi-polymatroidal ideals of $ R$ are studied. More precisely, the behavior of the monomial localization of such ideals is investigated.


References [Enhancements On Off] (What's this?)

  • 1. S. Bandari and J. Herzog, Monomial localization and polymatroidal ideals, European J. Combin. 34 (2013), no. 4, 752-763. MR 3010115
  • 2. A. Conca and J. Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math. 54 (2003), no. 2, 137-152. MR 1995137 (2004k:13020)
  • 3. J. Herzog amd T. Hibi, Discrete polymatroids, J. Algebraic Combin. 16 (2002), no. 3, 239-268. MR 1957102 (2004c:52017)
  • 4. J. Herzog, A. Rauf, and M. Vladoiu, The stable set of associated prime ideals of a polymatroidal ideal, J. Algebraic Combin. 37 (2013), no. 2, 289-312. MR 3011344
  • 5. M. La Barbiera, Integral closure and normality of some classes of Veronese-type ideals, Riv. Mat. Univ. Parma (7) 9 (2008), 31-47. MR 2492672 (2010f:13004)
  • 6. -, On a class of monomial ideals generated by $ s$-sequences, Math. Rep. (Bucur.) 12(62) (2010), no. 3, 201-216. MR 2744777 (2012a:13035)
  • 7. -, On standard invariants of bi-polymatroidal ideals, Algebra Colloq. 21 (2014), no. 2, 267-274. MR 3192346
  • 8. -, A note on unmixed ideals of Veronese bi-type, Turkish J. Math. 37 (2013), no. 1, 1-7. MR 3006734
  • 9. B. Sturmfels, Gröebner bases and convex polytopes, Univ. Lecture Ser., vol. 8, Amer. Math. Soc., Providence, RI, 1996. MR 1363949 (97b:13034)
  • 10. R. H. Villarreal, Monomial algebras, Monogr. Textbooks Pure Appl. Math., vol. 238, Marcel Dekker, Inc., New York, 2001. MR 1800904 (2002c:13001)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 13F20

Retrieve articles in all journals with MSC (2010): 13F20


Additional Information

M. La Barbiera
Affiliation: Department of Mathematics and Informatics, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
Email: monicalb@unime.it

DOI: https://doi.org/10.1090/spmj/1366
Keywords: Bi-polymatroidal ideals, monomial localization
Received by editor(s): September 5, 2013
Published electronically: September 21, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society