Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Certain approximation problems for functions on the infinite-dimensional torus: Analogs of the Jackson theorem

Author: S. S. Platonov
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 26 (2014), nomer 6.
Journal: St. Petersburg Math. J. 26 (2015), 933-947
MSC (2010): Primary 41A17; Secondary 42A10
Published electronically: September 21, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Approximation of functions on the infinite-dimensional torus by trigonometric polynomials is treated. The main results of the paper provide analogs of the Jackson theorem about estimates of the best approximation in terms of the modulus of continuity of a function.

References [Enhancements On Off] (What's this?)

  • 1. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
    Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
  • 2. Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962. MR 0152834
  • 3. S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York-Heidelberg., 1975. Translated from the Russian by John M. Danskin, Jr.; Die Grundlehren der Mathematischen Wissenschaften, Band 205. MR 0374877
  • 4. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh series and transforms. Theory and applications, Mauka, Moscow, 1987. (Russian) MR 0925004 (89h:42031
  • 5. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, and A. I. Rubinshteĭn, \cyr Mul′tiplikativnye sistemy funktsiĭ i garmonicheskiĭ analiz na nul′mernykh gruppakh, “Èlm”, Baku, 1981 (Russian). MR 679132
  • 6. Christian Berg, Potential theory on the infinite dimensional torus, Invent. Math. 32 (1976), no. 1, 49–100. MR 0402093,
  • 7. R. Holley and D. Stroock, Diffusions on an infinite-dimensional torus, J. Funct. Anal. 42 (1981), no. 1, 29–63. MR 620579,
  • 8. Thomas J. S. Taylor, On the Wiener semigroup and harmonic analysis on the infinite-dimensional torus, Acta Appl. Math. 10 (1987), no. 2, 131–143. MR 913556
  • 9. A. Bendikov and L. Saloff-Coste, On the sample paths of diagonal Brownian motions on the infinite dimensional torus, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 2, 227–254 (English, with English and French summaries). MR 2044817,
  • 10. François Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes ℘-adiques, Bull. Soc. Math. France 89 (1961), 43–75 (French). MR 0140941
  • 11. N. Bourbaki, Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algèbres normées. Chapitre II: Groupes localement compacts commutatifs, Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967 (French). MR 0213871
  • 12. V. K. Dzyadyk, \cyr Vvedenie v teoriyu ravnomernogo priblizheniya funktsiĭ polinomami, Izdat. “Nauka”, Moscow, 1977 (Russian). MR 0612836

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 41A17, 42A10

Retrieve articles in all journals with MSC (2010): 41A17, 42A10

Additional Information

S. S. Platonov
Affiliation: Petrozavodsk State University, pr. Lenina 33, Petrozavodsk 185910, Russia

Keywords: Approximation of functions, Jackson theorems, infinite-dimensional torus, harmonic analysis on compact Abelian groups
Received by editor(s): January 21, 2014
Published electronically: September 21, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society