Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On solutions of convolution equations in spaces of ultradifferentiable functions


Author: D. A. Polyakova
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 26 (2014), nomer 6.
Journal: St. Petersburg Math. J. 26 (2015), 949-963
MSC (2010): Primary 44A35; Secondary 46E10
DOI: https://doi.org/10.1090/spmj/1369
Published electronically: September 21, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A representation for a particular and the general solution is established for convolution equations in nonquasianalytic Beurling spaces ultradifferentiable functions of mean type on a finite interval. As a particular case, differential equations of infinite order with constant coefficients are studied.


References [Enhancements On Off] (What's this?)

  • 1. D. A. Abanina, Solvability of convolution equations in Beurling spaces of ultradifferentiable functions of normal type on an interval, Sibirsk. Mat. Zh. 53 (2012), no. 3, 477-494; English transl., Sib. Math. J. 53 (2012), no. 3, 377-392. MR 2978455
  • 2. -, Exponential-polynomial basis in the null space of convolution operators in classes of ultradifferentiable functions, Vladikavkaz. Mat. Zh. 13 (2011), no. 4, 3-17. (Russian) MR 2907216 (2012m:44005)
  • 3. R. Meise, B. A. Taylor, and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), no. 4, 729-756. MR 916742 (89c:46058)
  • 4. R. Meise, K. Schwerdtfeger, and B. A. Taylor, Kernels of slowly decreasing convolution operators, Doga Mat. 10 (1986), no. 1, 176-197. MR 872875 (88e:30073)
  • 5. J. Bonet, A. Galbis, and R. Meise, On the range of convolution operators on non-quasianalytic ultradifferentiable functions, Studia Math. 126 (1997), no. 2, 171-198. MR 1472697 (99a:46071)
  • 6. A. F. Leont'ev, Representation of arbitrary entire functions by Dirichlet series, Dokl. Akad. Nauk SSSR 164 (1965), no. 1, 40-42. (Russian) MR 0188440 (32:5878)
  • 7. Yu. F. Korobeĭnik, Representative systems, Izv. Akad. Nauk. SSSR Ser. Mat. 42 (1978), no. 2, 325-355; English transl., Math. USSR-Izv. 12 (1978), no. 2, 309-355. MR 494558 (82b:46006)
  • 8. D. A. Abanina, Representation of solutions of convolution equations in nonquasianalytic Beurling classes of ultradifferentiable functions of normal type, Izv. Vyssh. Uchebn. Zaved. Mat. 2011, no. 6, 3-11; English transl., Russian Math. (Iz. VUZ) 55 (2011), no. 6, 1-8. MR 2931699
  • 9. A. V. Abanin and I. A. Fulip'ev, Analytic realization of spaces dual to spaces of infinitely differentiable functions, Sibirsk. Mat. Zh. 47 (2006), no. 3, 485-500; English transl., Sib. Math. J. 47 (2006), no. 3, 397-409. MR 2249161 (2007h:46035)
  • 10. D. M. Schneider, Sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc. 197 (1974), 161-180. MR 0357835 (50:10301)
  • 11. R. P. Boas, Entire functions, Acad. Press, New York, 1954. MR 0068627 (16:914f)
  • 12. O. V. Epifanov, Variations of weakly sufficient sets in spaces of analytic functions, Izv. Vyssh. Uhebn. Zaved. Mat. 1986, no. 7, 50-56; English transl., Sov. Math. (Iz. VUZ) 30 (1986), no. 7, 67-74. MR 867608 (88b:30079)
  • 13. Yu. F. Korobeĭnik, Inductive and projective topologies. Sufficient sets and representative systems, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 3, 539-565; English transl., Math. USSR-Izv. 28 (1987), no. 3, 529-554. MR 854595 (88b:46044b)
  • 14. B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956; English transl., Transl. Math. Monogr., vol. 5, Amer. Math. Soc., Providence, RI, 1972. MR 0087740 (19:402c)
  • 15. A. F. Leont'ev, Exponential series, Nauka, Moscow, 1976. (Russian) MR 0584943 (58:28451)
  • 16. D. A. Polyakova, On the continuous linear right inverse for convolution operators in spaces of ultradifferentiable functions, Mat. Zametki 96 (2014), no. 4, 548-566; English transl., Math. Notes 96 (2014), no. 4, 522-537).
  • 17. A. V. Abanin, Nontrivial expansions of zero and absolutely representing systems, Mat. Zametki 57 (1995), no. 3-4, 335-344. MR 1346649 (96e:46031)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 44A35, 46E10

Retrieve articles in all journals with MSC (2010): 44A35, 46E10


Additional Information

D. A. Polyakova
Affiliation: Southern Federal University, ul. Mil′chakova 8a, Rostov-on-Don 344090, Russia; Southern Mathematical Institute, VNTS RAS and RNO-A, ul. Markusa 22, Vladikavkaz 362027, Russia
Email: forsites1@mail.ru

DOI: https://doi.org/10.1090/spmj/1369
Keywords: Ultradifferentiable functions, convolution equations, differential equation of infinite order, series of exponentials
Received by editor(s): May 19, 2014
Published electronically: September 21, 2015
Additional Notes: Supported by RFBR (grant no. 14-01-31083)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society