Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Lower estimates for $ p$-moduli and Sobolev class mappings


Author: R. R. Salimov
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 26 (2014), nomer 6.
Journal: St. Petersburg Math. J. 26 (2015), 965-984
MSC (2010): Primary 30C62; Secondary 46E35
DOI: https://doi.org/10.1090/spmj/1370
Published electronically: September 21, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Finite distortion homeomorphisms on the plane are studied with the help of the moduli techniques. On that basis, a problem that dates back to M. A. Lavrent'ev is solved; this problem concerns estimating the area of the image of a disk under the mappings mentioned above. The asymptotic behavior of such mappings at a point is studied. A condition ensuring the finite Lipschitz property is found.


References [Enhancements On Off] (What's this?)

  • 1. M. A. Lavrent'ev, Variational methods for boundary value problems for systems of elliptic equations, Izdat. Akad. Nauk SSSR, Moscow, 1962; English transl., Noordhoff, Ltd., Groningen, 1963. MR 0146377 (26:3899)
  • 2. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York etc., 2009. MR 2466579 (2012g:30004)
  • 3. B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219. MR 0097720 (20:4187)
  • 4. F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393. MR 0139735 (25:3166)
  • 5. V. I. Ryazanov and E. A. Sevost'yanov, Equicontinuous classes of ring $ Q$-homeomorphisms, Sibirsk. Mat. Zh. 48 (2007), no. 6, 1361-1376; English transl., Sib. Mat. J. 48 (2007), no. 6, 1093-1105. MR 2397516 (2009k:30030)
  • 6. R. R. Salimov, Absolute continuity on lines and the differentiability of a generalization of quasiconformal mappings, Izv. Ross. Akad. Nauk Sci. Mat. 72 (2008), no. 5, 141-148; English transl., Izv. Math. 72 (2008), no. 5, 977-984. MR 2473774 (2010a:30038)
  • 7. -Estimation of the measure of the image of the ball, Sibirsk. Mat. Zh. 53 (2012), no. 4, 920-930; English transl., Sib. Math. J. 53 (2012), no. 4, 739-747. MR 3013536
  • 8. -, On finitely Lipschitz space mappings, Sib. Elektron. Mat. Izv. 8 (2011), 284-295. MR 2876547 (2012m:30036)
  • 9. -, On the Lipschitz property of a class of mappings, Mat. Zametki 94 (2013), no. 4, 591-599; English transl., Math. Notes 94 (2013), no. 4, 559-566.
  • 10. R. R. Salimov and E. A. Sevost'yanov, Theory of ring $ Q$-mappings and geometric function theory, Mat. Sb. 201 (2010), no. 6, 131-158; English transl., Sb. Math. 201 (2010), no. 5-6, 909-934. MR 2682368 (2011i:30026)
  • 11. E. A. Sevost'yanov, On the theory of the removal of singularities for mappings with an unbounded characteristic of quasiconformality, Izv. Ross. Akad. Nauk Ser. Mat. 74 (2010), no. 1, 159-174; English transl., Izv. Math. 74 (2010), no. 1, 151-165. MR 2655240 (2011c:30066)
  • 12. -, On space mappings with integral restrictions on the characteristic, Algebra i Analiz 24 (2012), no. 1, 131-156; English transl., St.Petersburg Math. J. 24 (2013), no. 1, 99-115. MR 3013296
  • 13. -, On the branch points of mappings with an unbounded characteristic of quasiconformality, Sibirsk. Mat. Zh. 51 (2010), no. 5, 1129-1146; English transl., Sib. Math. J. 51 (2010), no. 5, 899-912. MR 2768509 (2011k:30027)
  • 14. A. Golberg, Homeomorphisms with integrally restricted moduli, Complex Analysis and Dynamical Systems. IV, Pt. 1, Contemp. Math., vol. 553, Amer. Math. Soc., Providence, RI, 2011, pp. 83-98. MR 2868590
  • 15. V. I. Kruglikov, Capacities of condensors and quasiconformal in the mean mappings in space, Mat. Sb. 130 (1986), no. 2, 185-206; English transl., Sb. Math. 58 (1987), no. 1, 185-205. MR 854971 (88d:30028)
  • 16. S. K. Vodop'yanov and A. D. Ukhlov, Superposition operators in Sobolev spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 2002, no. 10, 11-33; English transl., Russian Math. (Iz. VUZ) 46 (2002), no. 10, 9-31. MR 1956487 (2003m:47044)
  • 17. -, Superposition operators in Lebesgue spaces and the differentiability quasi-additive set functions, Vladikavkaz. Mat. Zh. 4 (2002), no. 1, 11-33. (Russian) MR 2065083 (2005b:28006)
  • 18. S. K. Vodop'yanov, Description of substitution operators of Sobolev spaces, Dokl. Akad. Nauk 400 (2005), no. 1, 11-15; English transl., Dokl. Math. 71 (2005), no. 1, 5-9. MR 2159591 (2008c:47047)
  • 19. -, Composition operators on Sobolev spaces, Complex Analysis and Dynamical Systems. II, Contemp. Math., vol. 382, Amer. Math. Soc., Providence, RI, 2005, pp. 401-415. MR 2175907 (2006g:46058)
  • 20. D. A. Kovtonyuk, I. V. Petkov, V. I. Ryazanov, and R. R. Salimov, Boundary behavior and the Dirichlet problem for the Beltrami equations, Algebra i Analiz 25 (2013), no. 4, 101-124; English transl., St.Petersburg Math. J. 25 (2014), no. 4, 587-603. MR 3184618
  • 21. T. Lomako, R. Salimov, and E. A. Sevost'yanov, On equicontinuity of solutions to the Beltrami equations, Ann. Univ. Buchar. Math. Ser. 1 (LIX) (2010), no. 2, 263-274. MR 2920236
  • 22. V. I. Ryazanov, R. R. Salimov, U. Srebro, and E. Yakubov, On boundary value problems for the Beltrami equations, Complex Analysis and Dynamical Systems. IV, Contemp. Math., vol. 591, Amer. Math. Soc., Providence, RI, pp. 211-242. MR 3155690
  • 23. E. S. Afanas'eva, V. I. Ryazanov, and R. R. Salimov, On mappings in Orlicz-Sobolev classes on Riemannian manifolds, Ukr. Mat. Visn. 8 (2011), no. 3, 319-342; English transl., J. Math. Sci. (N.Y.) 181 (2012), no. 1, 1-17. MR 2906695
  • 24. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost'yanov, On the theory of Orlicz-Sobolev classes, Algebra i Analiz 25 (2013), no. 6, 50-102; English transl., St.Petersburg Math. J. 25 (2014), no. 6, 929-963. MR 3234840
  • 25. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost'yanov, On mappings in the Orlicz-Sobolev classes, Ann. Univ. Buchar. Math. Ser. 3(LXI) (2012), no. 1, 67-78. MR 3034963
  • 26. O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A1. Math. 448 (1969), 1-40. MR 0259114 (41:3756)
  • 27. J. Hesse, A $ p$-extremal length and $ p$-capacity equality, Ark. Mat. 13 (1975), 131-144. MR 0379871 (52:776)
  • 28. V. A. Shlyk, On the equality between $ p$-capacity and $ p$-modulus, Sibirsk. Mat. Zh. 34 (1993), no. 6, 216-221; English transl., Sib. Mat. J. 34 (1993), no. 6, 1196-1200. MR 1268174 (95d:31003)
  • 29. F. W. Gehring, Quasiconformal mappings, Complex Analysis and its Applications. Vol. II, Internat. Atomic Energy Agency, Vienna, 1976, pp. 213-268. MR 0480997 (58:1144)
  • 30. V. M. Gol'dshtein and Yu. G. Reshetnyak, Introduction to the theory of functions with generalized derivatives and quasiconformal mappings, Nauka, Moscow, 1983. (Russian) MR 738784 (85m:46031a)
  • 31. V. G. Maz'ya, Classes of domains measures and capacities in the theory of spaces of differentiable functions, Current problems in mathematics. Fundamental directions, vol.  26, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, VINITI, Moscow, 1988, pp.159-228. (Russian) MR 1178112
  • 32. S. Saks, Theory of the integral, 2nd ed., Dover Publ., New York, 1964. MR 0167578 (29:4850)
  • 33. D. A. Kovtonyuk and V. I. Ryazanov, On the theory lower $ Q$-homeomorphisms, Ukr. Mat. Visn. 5 (2008), no. 2, 159-184; English transl., Urk. Math. Bull. 5 (2008), no. 2, 157-181. MR 2559832 (2010k:30022)
  • 34. W. P. Ziemer, Extremal length and $ p$-capacity, Michigan Math. J. 16 (1969), 43-51. MR 0247077 (40:346)
  • 35. T. Ransford, Potential theory in the complex plane, London Math. Soc. Student Text, vol. 28, Cambridge Univ. Press, Cambridge, 1995. MR 1334766 (96e:31001)
  • 36. T. Rado and P. V. Reichelderfer, Continuous transformations in analysis, Grundlehren. Math. Wiss., Bd. 75, Springer-Verlag, Berlin, 1955. MR 0079620 (18:115c)
  • 37. H. Federer, Geometric measure theory, Grundlehren. Math. Wiss., Bd. 153, Springer, Berlin etc., 1969. MR 0257325 (41:1976)
  • 38. F. W. Gehring and O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. A1. Math. 272 (1959), 3-8. MR 0124487 (23:A1799)
  • 39. F. W. Gehring, Lipschitz mappings and the $ p$-capacity of ring in $ n$-space, Advances Theory Riemann Surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. of Math. Stud., vol. 66, Princeton Univ. Press, Princeton, NJ, 1971, pp. 175-193. MR 0310238 (46:9340)
  • 40. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Clarendon Press, Oxford, 2001. MR 1859913 (2003c:30001)
  • 41. T. Iwaniec and V. Sverák, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), no. 1, 181-188. MR 1160301 (93k:30023)
  • 42. D. A. Kovtonyuk and V. I. Ryazanov, On the theory of mappings with finite area distortion, J. Anal. Math. 104 (2008), 291-306. MR 2403438 (2009e:30042)
  • 43. V. G. Maz'ya, Sobolev spaces, Leningrad. Univ., Leningrad, 1985; English transl., Springer Ser. Soviet Math., Springer, Berlin, 1985. MR 0807364 (87g:46055); MR 0817985 (87g:16056)
  • 44. D. Menchoff, Sur les differencelles totales des fonctions univalentes, Math. Ann. 105 (1931), no. 1, 75-85. MR 1512705

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30C62, 46E35

Retrieve articles in all journals with MSC (2010): 30C62, 46E35


Additional Information

R. R. Salimov
Affiliation: Institute of Applied Mathematics and Mechanics, National Academy of Science, 74 Rosa Luksemburg str., 83114 Donetzk, Ukraine
Email: ruslan623@yandex.ru

DOI: https://doi.org/10.1090/spmj/1370
Keywords: $p$-Molude, $p$-capacity, mappings with finite distortion, finite Lipschitzian property
Received by editor(s): January 23, 2014
Published electronically: September 21, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society