Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 


(Locally) shortest arcs of a special sub-Riemannian metric on the Lie group $ \mathrm{SO}_0(2,1)$

Author: V. N. Berestovskiĭ
Translated by: the author
Original publication: Algebra i Analiz, tom 27 (2015), nomer 1.
Journal: St. Petersburg Math. J. 27 (2016), 1-14
MSC (2010): Primary 22E30, 49J15, 53C17
Published electronically: December 7, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The geodesics, shortest arcs, cut loci, and conjugate sets are found for a left-invariant sub-Riemannian metric on the Lie group $ \mathrm {SO}_0(2,1)$ under the condition that the metric is right-invariant relative to the Lie subgroup $ \mathrm {SO}(2)\subset \mathrm {SO}_0(2,1)$.

References [Enhancements On Off] (What's this?)

  • 1. Shigeo Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. (2) 10 (1958), 338–354. MR 0112152
  • 2. Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885
  • 3. V. N. Berestovskii and Luis Guijarro, A metric characterization of Riemannian submersions, Ann. Global Anal. Geom. 18 (2000), no. 6, 577–588. MR 1800594, 10.1023/A:1006683922481
  • 4. V. N. Berestovskiĭ and I. A. Zubareva, Shapes of spheres of special nonholonomic left-invariant intrinsic metrics on some Lie groups, Sibirsk. Mat. Zh. 42 (2001), no. 4, 731–748, i (Russian, with Russian summary); English transl., Siberian Math. J. 42 (2001), no. 4, 613–628. MR 1865469, 10.1023/A:1010439312070
  • 5. V. N. Berestovskiĭ, Universal methods for the search for normal geodesics on Lie groups with a left-invariant sub-Riemannian metric, Sibirsk. Mat. Zh. 55 (2014), no. 5, 959–970 (Russian, with Russian summary); English transl., Sib. Math. J. 55 (2014), no. 5, 783–791. MR 3289106
  • 6. A. V. Pogorelov, Differentsialnaya geometriya, Fifth edition, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0268787
  • 7. Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
  • 8. F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR 0107649
  • 9. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics, No. 55, Springer-Verlag, Berlin-New York, 1968 (German). MR 0229177

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 22E30, 49J15, 53C17

Retrieve articles in all journals with MSC (2010): 22E30, 49J15, 53C17

Additional Information

V. N. Berestovskiĭ
Affiliation: Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Keywords: Geodesic, Lie algebra, Lie group, left-invariant sub-Riemannian metric, shortest arc.
Received by editor(s): June 10, 2014
Published electronically: December 7, 2015
Additional Notes: Partially supported by RFBR (grant no. 14-01-00068-p) and by a grant of the Government of the Russian Federation for the State Support of Scientific Research (agreement no. 14.B25.31.0029)
Article copyright: © Copyright 2015 American Mathematical Society