Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 


Noncomplete systems of exponentials on arcs and Carleman nonquasianalytic classes. II

Authors: A. M. Gaĭsin and R. A. Gaĭsin
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 27 (2015), nomer 1.
Journal: St. Petersburg Math. J. 27 (2016), 33-50
MSC (2010): Primary 30D60; Secondary 26E10
Published electronically: December 7, 2015
MathSciNet review: 3443265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In terms of the noncompleteness of a system of exponentials, a criterion is established for the nontriviality of the Siddiqi class on an arc of bounded slope all chords of which have slope strictly smaller than one.

References [Enhancements On Off] (What's this?)

  • [1] A. F. Leont′ev, Posledovatelnosti polinomov iz eksponent, “Nauka”, Moscow, 1980 (Russian). MR 577300
  • [2] Jacob Korevaar, Müntz approximation on arcs and Macintyre exponents, Complex analysis Joensuu 1978 (Proc. Colloq., Univ. Joensuu, Joensuu, 1978), Lecture Notes in Math., vol. 747, Springer, Berlin, 1979, pp. 205–218. MR 553046
  • [3] J. Korevaar, Approximation on curves by linear combinations of exponentials, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 387–393. MR 0338388
  • [4] A. F. Leont′ev, The completeness of a system of exponents on a curve, Sibirsk. Mat. Ž. 15 (1974), 1103–1114, 1181 (Russian). MR 0361024
  • [5] Paul Malliavin and Jamil A. Siddiqi, Approximation polynomiale sur un arc analytique dans le plan complexe., C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A105–A108 (French). MR 0287009
  • [6] Jamil A. Siddiqi, Approximation polynomiale sur un arc dans le plan complexe, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A731–A733 (French). MR 0325982
  • [7] Paul Malliavin and Jamil A. Siddiqi, Classes de fonctions monogènes et approximation par des sommes d’exponentielles sur un arc rectifiable de 𝐶, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 18, Aii, A1091–A1094. MR 0404634
  • [8] A. Baillette and J. A. Siddiqi, Approximation de fonctions par des sommes d’exponentielles sur un arc rectifiable, J. Analyse Math. 40 (1981), 263–268 (1982) (French). MR 659794,
  • [9] J. A. Siddiqi, Non-spanning sequences of exponentials on rectifiable plane arcs, Linear and Complex Analysis. Problem Book, Lecture Notes in Math., vol. 1043, Springer-Verlag, Berlin, 1984, pp. 555-556.
  • [10] A. M. Gaĭsin and I. G. Kinzyabulatov, A theorem of Levinson-Sjöberg type: applications, Mat. Sb. 199 (2008), no. 7, 41–62 (Russian, with Russian summary); English transl., Sb. Math. 199 (2008), no. 7-8, 985–1007 (2008). MR 2488222,
  • [11] J. Korevaar and M. Dixon, Nonspanning sets of exponentials on curves, Acta Math. Acad. Sci. Hungar. 33 (1979), no. 1-2, 89–100. Special issue dedicated to George Alexits on the occasion of his 80th birthday. MR 515123,
  • [12] A. M. Gaĭsin, Strong incompleteness of a system of exponentials and a problem of Macintyre, Mat. Sb. 182 (1991), no. 7, 931–945 (Russian); English transl., Math. USSR-Sb. 73 (1992), no. 2, 305–318. MR 1128252
  • [13] A. M. Gaĭsin, The Levinson condition in the theory of entire functions: equivalent statements, Mat. Zametki 83 (2008), no. 3, 350–360 (Russian, with Russian summary); English transl., Math. Notes 83 (2008), no. 3-4, 317–326. MR 2423534,
  • [14] A. F. \cyr{L}eont′ev, Ryady eksponent, Izdat. “Nauka”, Moscow, 1976 (Russian). MR 0584943
  • [15] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952 (French). MR 0051893
  • [16] Thøger Bang, Om quasi-analytiske Funktioner, Thesis, University of Copenhagen,], 1946 (Danish). MR 0017782
  • [17] M. Dixon and J. Korevaar, Nonspanning sets of powers on curves: analyticity theorem, Duke Math. J. 45 (1978), no. 3, 543–559. MR 507458
  • [18] R. A. Gaĭsin, Estimation of intermediate derivatives and theorems of Bang-type. I, Algebra i Analiz 27 (2015), no. 1, 23-48. (Russian)
  • [19] Laurent Schwartz, Approximation d’un fonction quelconque par des sommes d’exponentielles imaginaires, Ann. Fac. Sci. Univ. Toulouse (4) 6 (1943), 111–176 (French). MR 0015553
  • [20] Laurent Schwartz, Étude des sommes d’exponentielles réelles, Actualités Sci. Ind., no. 959, Hermann et Cie., Paris, 1943 (French). MR 0014502
  • [21] B. N. Khabibullin, Completeness of exponential systems and uniqueness sets. Bashkir. Gos. Univ. Press, Ufa, 2006. (Russian)
  • [22] I. F. Krasičkov, Convergence of Dirichlet polynomials, Sibirsk. Mat. Ž. 7 (1966), 1039–1058 (Russian). MR 0210879
  • [23] Rein Zeinstra, Zeros and regular growth of Laplace transforms along curves, J. Reine Angew. Math. 424 (1992), 1–15. MR 1144158,
  • [24] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis. Vol. 2: Measure. The Lebesgue integral. Hilbert space, Translated from the first (1960) Russian ed. by Hyman Kamel and Horace Komm, Graylock Press, Albany, N.Y., 1961. MR 0118796
    A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis. Vol. 1. Metric and normed spaces, Graylock Press, Rochester, N. Y., 1957. Translated from the first Russian edition by Leo F. Boron. MR 0085462
  • [25] B. V. \cyr{S}habat, Vvedenie v kompleksnyi analiz. Chast I. Funktsii odnogo peremennogo, Izdat. “Nauka”, Moscow, 1976 (Russian). Second edition, revised and augmented. MR 0584934
  • [26] A. E. Fryntov, Operators preserving subharmonicity and some problems of classical complex analysis, Doctor. diss., FINT, Khar'kov, 1995.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30D60, 26E10

Retrieve articles in all journals with MSC (2010): 30D60, 26E10

Additional Information

A. M. Gaĭsin
Affiliation: Institute of Mathematics with Computer Center, Russian Academy of Sciences, ul. Chernyshevskogo 112, 450008 Ufa, Bashkir State University 450074, Ufa, ul. Zaki Validi, 32, Russia

R. A. Gaĭsin
Affiliation: Bashkir State University, ul. Zaki Validi 32, 450074 Ufa, Russia

Keywords: Noncomplete systems of exponentials, Carleman quasianalytic classes on arcs, Siddiqi problem
Received by editor(s): April 1, 2014
Published electronically: December 7, 2015
Article copyright: © Copyright 2015 American Mathematical Society