Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Piecewise distance preserving maps


Authors: A. Petrunin and A. Yashinski
Translated by: the authors
Original publication: Algebra i Analiz, tom 27 (2015), nomer 1.
Journal: St. Petersburg Math. J. 27 (2016), 155-175
MSC (2010): Primary 52B70
DOI: https://doi.org/10.1090/spmj/1381
Published electronically: December 7, 2015
MathSciNet review: 3443270
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is part of a geometry course held during the Fall 2011 MASS Program at Penn State (www.math.psu.edu/mass/). The online version of these lectures also contains video illustrations, hints, and solutions for most of the exercises, and a minimalistic section covering preliminaries.

In the lectures, piecewise distance preserving maps are discussed that act from a 2-dimensional polyhedral space into the plane. Roughly speaking, a polyhedral space is a space that is glued together out of triangles, for example the surface of a polyhedron. If one imagines such a polyhedral space as a paper model, then a piecewise distance preserving map into the plane is essentially a way to fold the model so that it lays flat on a table.

Only the 2-dimensional case is considered, to keep things easy to visualize. However, most of the results admit generalizations to higher dimensions. These results are discussed in the Final Remarks, where proper credit and references are given.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Akopyan, PL-analog of Nash-Kuiper theorem, http://www.moebiuscontest.ru/files/2007/ akopyan.pdf.
  • 2. A. V. Akopyan and A. S. Tarasov, A constructive proof of Kirszbraun's theorem, Mat. Zametki 84 (2008), no. 5, 781-784; English transl., Math. Notes 84 (2008), no. 5-6, 725-728. MR 2500644 (2010c:47123)
  • 3. A. D. Alexandrov, Convex polyhedra, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950; English transl., Springer Monogr. Math., Springer-Verlag, Berlin, 2005. MR 2127379 (2005j:52002)
  • 4. R. Alexander, Lipschitzian mappings and total mean curvature of polyhedral surfaces. I, Trans. Amer. Math. Soc. 288 (1985), no. 2, 661-678. MR 776397 (86c:52004)
  • 5. V. I. Arnol'd, Arnold problems, FAZIS, Moscow, 2000; English transl., Springer-Verlag, Berlin, 2004. MR 2078115 (2005c:58001)
  • 6. K. Bezdek and R. Connelly, Pushing disks apart -- the Kneser-Poulsen conjecture in the plane, J. Reine Angew. Math. 553 (2002), 221-236. MR 1944813 (2003m:52001)
  • 7. Yu. D. Burago and V. A. Zalgaller, Polyhedral embedding of a net, Vestn. Leningrad. Univ. Ser. Mat. Mekh. Astronom. 1960, vyp. 7, 66-80. (Russian) MR 0116317 (22:7112)
  • 8. -, Isometric piecevise-linear embeddings of two-dimensional manifolds with a polyhedral metric into $ \mathbb{R}^3$, Algebra i Analiz 7 (1995), no. 3, 76-95; English transl., St. Petersburg Math. J. 7 (1996), no. 3, 369-385. MR 1353490 (96g:53091)
  • 9. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on $ \mathbb{R}^m$, J. Geom. 16 (1981), no. 2, 187-193. MR 642266 (83b:51020)
  • 10. D. Yu. Burago, Yu. D. Burago, and S. V. Ivanov, A course in metric geometry, Graduate Stud. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001. MR 1835418 (2002e:53053)
  • 11. L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its applications, Proc. Sympos. Pure Math., vol.7, Amer. Math. Soc., Providence, RI, 1963, pp. 101-180. MR 0157289 (28:524)
  • 12. D. B. Fuchs and S. L. Tabachnikov, Mathematical omnibus, Thirty lectures on classic mathematics. Amer. Math. Soc., Providence, RI, 2007. MR 2350979 (2008h:00002)
  • 13. M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3), vol. 9, Springer-Verlag, Berlin, 1986. MR 864505 (90a:58201)
  • 14. T. C. Hull, Solving cubics with creases: the work of Beloch and Lill, Amer. Math. Monthly 118 (2011), no. 4, 307-315. MR 2800341 (2012e:52069)
  • 15. Ya. M. Eliashberg and N. M. Mishachev, Introduction to the $ h$-principle, MCNMO, Moscow, 2004.
  • 16. M. D. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math. 22 (1934), 77-108.
  • 17. S. Krat, Approximation problems in length geometry, Thesis, Penn. State. Univ., 2005. MR 2706488
  • 18. R. J. Lang, Origami design secrets. Mathematical methods for an ancient art, CRC Press, Boca Raton, FL, 2012. MR 2841394
  • 19. J. Montroll and R. J. Lang, Origami sea life, Dover Publ., New York, 1991.
  • 20. A. M. Petrunin, Arnold's problem on paper folding, Tasks St. Petersburg School Olympiad on Mathematics, Nevskii Dialect, St. Petersburg, 2008, pp. 116-125, arXiv: 1004.0545. (Russian)
  • 21. -, Intrinsic isometries in Euclidean space, Algebra i Analiz 22 (2010), no. 5, 140-153; English transl., St. Petersburg Math. J. 22 (2011). no. 5, 803-812. MR 2828830 (2012e:54037)
  • 22. A. Petrunin and A. Yashinski, Lectures on piecewise distance preserving maps, arXiv:1405.6606.
  • 23. S. Saraf, Acute and nonobtuse triangulations of polyhedral surfaces, European J. Combin. 30 (2009), no. 4, 833-840. MR 2504642 (2010e:52028)
  • 24. A. S. Tarasov, Solution of Arnold's ``folded ruble'' problem, Chebyshevskiĭ Sb. 5 (2004), no. 1, 174-187. (Russian) MR 2098977 (2005e:52005)
  • 25. I. Yaschenko, Make your dollar bigger now!!!, Math. Intelligencer 20 (1998), no. 2, 38-40.
  • 26. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), no. 1, 83-93. MR 0011702 (6:203e)
  • 27. V. A. Zalgaller, Isometric imbedding of polyhedra, Dokl. Akad. Nauk SSSR 123 (1958), no. 4, 599-601. (Russian) MR 0103511 (21:2279)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 52B70

Retrieve articles in all journals with MSC (2010): 52B70


Additional Information

A. Petrunin
Affiliation: Mathematics Department, Penn State University, University Park, Pennsylvania 16802
Email: anton.petrunin@gmail.com

A. Yashinski
Affiliation: Mathematics Department, Penn State University, University Park, Pennsylvania 16802
Email: allan@math.hawaii.edu

DOI: https://doi.org/10.1090/spmj/1381
Keywords: Polyhedral space, piecewise distance preserving maps, piecewise linear maps
Received by editor(s): May 25, 2014
Published electronically: December 7, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society