Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Oscillation method in the spectral problem for a fourth order differential operator with a self-similar weight

Author: A. A. Vladimirov
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 27 (2015), nomer 2.
Journal: St. Petersburg Math. J. 27 (2016), 237-244
MSC (2010): Primary 34L10, 34L15
Published electronically: January 29, 2016
MathSciNet review: 3444462
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Selfadjoint boundary problems are considered for the differential equation $ y^{(4)}-\lambda \rho y=0$, where the weight $ \rho \in W_2^{-1}[0,1]$ is the generalized derivative of a self-similar function of the Kantor type. On the basis of the study of oscillation properties of eigenfunctions, the characteristics of the known spectral asymptotics of such problems are refined.

References [Enhancements On Off] (What's this?)

  • 1. A. A. Vladimirov and I. A. Sheipak, On the Neumann problem for the Sturm-Liouville equation with Cantor-type self-similar weight, Funktional. Anal. i Prilozen. 47 (2013), no. 4, 18-29; English transl., Funct. Anal. Appl. 47 (2013), no. 4, 261-270. MR 3185121
  • 2. F. S. Rofe-Beketov and A. M. Hol'kin, Spectral analysis of differential operators, Ukr. Nat. Acad. Sci., Mariupol, 2001. (Russian)
  • 3. F. R. Gantmaher and M. G. Krein, Oscillation matrices and kernels and small oscillations of mechanical systems, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950; English transl., AMS Chelsea Publ., Providence, RI, 2002. MR 1908601 (2003f:34161)
  • 4. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325-377. MR 0102639 (21:1429)
  • 5. A. I. Nazarov, Logarithmic asymptotics of small deviations for some Gaussian processes in the $ L_2$-norm with respect to self-similar measure, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 311 (2004), 190-213; English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 3, 1314-1327. MR 2092208 (2005j:60078)
  • 6. A. A. Vladimirov, On the convergence of sequences of ordinary differential operators, Mat. Zametki 75 (2004), no. 6, 941-943; English transl., Math. Notes 75 (2004), no. 5-6, 877-880. MR 2086619 (2005c:47068)
  • 7. M. A. Naimark, Linear differential operators, 2nd ed., Nauka, Moscow, 1969; English transl. first edition, Ungar, New York, 1967, 1968. MR 0216050 (35:6885), MR 0262880 (41:7485)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 34L10, 34L15

Retrieve articles in all journals with MSC (2010): 34L10, 34L15

Additional Information

A. A. Vladimirov
Affiliation: A. A. Dorodnitsyn Computer Center, Russian Academy of Sciences, Vavilova str. 40, 119333 Moscow, Russia

Keywords: Differential operator, oscillation of eigenfunctions, self-similar function, spectral asymptotics
Received by editor(s): March 3, 2014
Published electronically: January 29, 2016
Additional Notes: Supported by RFBR (grant no. 13-01-00705)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society