Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Basis in an invariant space of entire functions


Authors: A. S. Krivosheev and O. A. Krivosheeva
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 27 (2015), nomer 2.
Journal: St. Petersburg Math. J. 27 (2016), 273-316
MSC (2010): Primary 30D10
DOI: https://doi.org/10.1090/spmj/1387
Published electronically: January 29, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of a basis is studied in a space of entire functions invariant under the differentiation operator. It is proved that every such space possesses a basis consisting of linear combinations of generalized eigenvectors. These linear combinations are formed within groups of exponents of arbitrarily small relative diameter. A complete description of the way to split the exponents into groups is obtained. Also, a criterion is found for the existence of a basis constructed by groups of zero relative diameter (so-called relatively small groups). In this connection a new criterion is obtained for the finiteness of the lower indicator of an entire function of exponential type.


References [Enhancements On Off] (What's this?)

  • 1. A. F. Leont'ev, Entire functions. Series of exponentials, Nauka, Moscow, 1983. (Russian) MR 753827 (86j:30005)
  • 2. V. V. Napalkov, Convolution equations in multidimensional spaces, Nauka, Moscow, 1982. (Russian) MR 678923 (86g:46054)
  • 3. A. F. Leont'ev, Sequences of polynomials of exponentials, Nauka, Moscow, 1980. (Russian) MR 577300 (81m:30002)
  • 4. L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math.(2) 48 (1947), no. 4, 857-929. MR 0023948 (9:428c)
  • 5. O. A. Gel'fond, Linear differential equations of infinite order with coefficients and asymptotic periods of entire functions, Tr. Mat. Inst. Steklova 38 (1951), 42-67. (Russian) MR 0047776 (13:929a)
  • 6. A. S. Krivosheev, The fundamental principle for invariant subspaces in convex domains, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 2, 71-136; English transl., Izv. Math. 68 (2004), no. 2, 291-353. MR 2058001 (2006g:30061)
  • 7. I. F. Krasichkov, Lower bound for entire functions of finite order, Sibirsk. Mat. Zh. 6 (1965), no. 4, 840-861. (Russian) MR 0193236 (33:1457)
  • 8. A. S. Krivosheev and O. A. Krivosheeva, A basis in an invariant subspace of analytic functions, Mat. Sb. 204 (2013), no. 12, 49-104; English transl., Sb. Math. 204 (2013), no. 11-12, 1475-1796. MR 3185085
  • 9. B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956. MR 0087740 (19:402c); English transl., Amer. Math. Soc., Providence, RI, 1964. MR 0156975 (28:217)
  • 10. P. Lelong and L. Gruman, Entire functions of several complex variables, Grundlehren Math. Wiss., Bd. 282, Springer-Verlag, Berlin, 1986. MR 837659 (87j:32001)
  • 11. V. S. Azarin, The indicators of an entire function and the regularity of the growth of the Fourier coefficients of the logarithm of its modulus, Funktsional. Anal. i Prilozhen. 9 (1975), no. 1, 47-48; English transl., Funct. Anal. Appl. 9 (1975), no. 1, 41-42. MR 0367202 (51:3444)
  • 12. A. S. Krivosheev and V. V. Napalkov, Complex analysis and convolution operators, Uspekhi Mat. Nauk 47 (1992), no. 6, 3-58; English transl., Russian Math. Surveys 47 (1992), no. 6, 1-56. MR 1209144 (94e:32003)
  • 13. A. S. Krivosheev, Indicators of entire functions and the continuation of solutions of a homogeneous convolution equation, Mat. Sb. 184 (1993), no. 8, 81-108; English transl., Sb. Math. 79 (1994), no. 2, 401-423. MR 1239760 (94k:32002)
  • 14. -, Basis by ``relatively small clusters'', Ufim. Mat. Zh. 2 (2010), no. 2, 67-69. (Russian)
  • 15. -, An almost exponential sequence of exponential polynomials, Ufim. Mat. Zh. 4 (2012), no. 1, 88-106; English transl., Ufa Math. J. 4 (2012), no. 1, 82-100.
  • 16. L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren Math. Wiss., Bd. 256, Springer-Verlag, Berlin, 1983. MR 717035 (85g:35002a)
  • 17. L. I. Ronkin, Introduction to the theory of entire functions of several variables, Nauka, Moscow, 1971. MR 0320357 (47:8896); English transl., Transl. Math. Monogr., vol. 44, Amer. Math. Soc., Providence, RI, 1974. MR 0346175 (49:10901)
  • 18. O. A. Krivosheeva, Singular points of the sum of series of exponential monomials on the boundary of the convergence domain, Algebra i Analiz 23 (2011), no. 2, 162-205; English transl., St. Petersburg Math. J. 23 (2012), no. 2, 321-350. MR 2841675 (2012h:30006)
  • 19. A. S. Krivosheev, An almost exponential basis, Ufim. Mat. Zh. 2 (2010), no. 1, 87-96. (Russian)
  • 20. O. A. Krivosheeva, Convergence domain for series of exponential polynomials, Ufim. Mat. Zh. 5 (2013), no. 4, 84-90; English transl., Ufa Math. J. 5 (2013), no. 4, 82-87.
  • 21. A. Grothendieck, Sur les espaces $ (F)$ et $ (DF)$, Summa Brasil. Math. 3 (1954), 57-123. MR 0075542 (17:765b)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30D10

Retrieve articles in all journals with MSC (2010): 30D10


Additional Information

A. S. Krivosheev
Affiliation: Institute of Mathematics With Computer Centrum, Russian Academy of Sciences, ul. Chernyshevskogo 112, 450048 Ufa, Russia

O. A. Krivosheeva
Affiliation: Baskhir State University, ul. Zaki Validi 32, 450076 Ufa, Russia
Email: kriolesya2006@yandex.ru

DOI: https://doi.org/10.1090/spmj/1387
Keywords: Entire function, basis, invariant subspace, interpolation
Received by editor(s): February 5, 2014
Published electronically: January 29, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society