Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Contact of a thin free boundary with a fixed one in the Signorini problem

Authors: N. Matevosyan and A. Petrosyan
Original publication: Algebra i Analiz, tom 27 (2015), nomer 3.
Journal: St. Petersburg Math. J. 27 (2016), 481-494
MSC (2010): Primary 35R35
Published electronically: March 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Signorini problem is studied near a fixed boundary where the solution is ``clamped down'' or ``glued''. It is shown that, in general, the solutions are at least $ C^{1/2}$ regular and that this regularity is sharp. Near the actual points of contact of the free boundary with the fixed one, the blowup solutions are shown to have homogeneity $ \kappa \geq 3/2$, while at the noncontact points the homogeneity must take one of the values: $ 1/2, 3/2,\dots ,m-1/2,\dots $.

References [Enhancements On Off] (What's this?)

  • [Alm] F. J. Almgren, Jr., Almgren's big regularity paper, $ Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Sci. Monogr. Ser. Math., vol. 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000. MR 1777737
  • [AU] D. E. Apushkinskaya and N. N. Ural'tseva, On the behavior of the free boundary near the boundary of the domain, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995), 5-19; English transl., J. Math. Sci. (N. Y.) 87 (1997), no. 2, 3267-3276. MR 1359745
  • [AC] I. Athanasopoulos and L. A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 49-66; English transl., J. Math. Sci. (N.Y.) 132 (2006), no. 3, 274-284. MR 2120184
  • [ACS] L. A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math. 130 (2008), no. 2, 485-498; DOI 10.1353/ajm.2008.0016. MR 2405165
  • [Ca1] -, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), no. 9, 1067-1075; DOI 10.1080/03605307908820119. MR 542512
  • [Ca2] -, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383-402; DOI 10.1007/BF02498216. MR 1658612
  • [CSS] L. A. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461; DOI 10.1007/s00222-007-0086-6. MR 2367025
  • [DS0] D. De Silva and O. Savin, $ C^{\infty }$ regularity of certain thin free boundaries, Preprint, 2014, arXiv:1402.1098.
  • [DS1] -, Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Preprint, 2014, arXiv:1406.6039.
  • [GP] N. Garofalo and A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math. 177 (2009), no. 2, 415-461; DOI 10.1007/s00222-009-0188-4. MR 2511747
  • [KPS] H. Koch, A. Petrosyan, and W. Shi, Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal. 126 (2015), no. 1, 3-44; DOI 10.1016/ MR 3388870
  • [LS] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519. MR 0216344
  • [PSU] A. Petrosyan, H. Shahgholian, and N. Ural'tseva, Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., vol. 136, Amer. Math. Soc., Providence, RI, 2012. MR 2962060
  • [Ri] D. J. A. Richardson, Variational problems with thin obstacles, PhD.-Thesis, Univ. British Columbia (Canada), 1978. MR 2628343
  • [U1] N. N. Ural'tseva, On the regularity of solutions of variational inequalities, Uspekhi Mat. Nauk 42 (1987), no. 6, 151-174; English transl., Russian Math. Surveys 42 (1987), no. 6, 191-219. MR 933999
  • [U2] -, $ C^1$-regularity of the boundary of a noncoincident set in a problem with an obstacle, Algebra Analiz 8 (1996), no. 2, 205-221; English transl., St. Petersburg Math. J. 8 (1997), no. 2, 341-353. MR 1392033
  • [We] G. S. Weiss, Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Differential Equations 23 (1998), no. 3-4, 439-455; DOI 10.1080/03605309808821352. MR 1620644

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35R35

Retrieve articles in all journals with MSC (2010): 35R35

Additional Information

N. Matevosyan
Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712

A. Petrosyan
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Keywords: Signorini problem, thin obstacle problem, thin free boundary, optimal regularity, contact with fixed boundary, Almgren's frequency formula
Received by editor(s): January 12, 2015
Published electronically: March 30, 2016
Additional Notes: The first author was supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST)
The second author was supported in part by NSF grant DMS-1101139
Dedicated: Dedicated to N. N. Ural’tseva on the occasion of her 80th birthday
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society