Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the Free Boundary in Heterogeneous Obstacle-Type Problems with Two Phases


Author: J. F. Rodrigues
Original publication: Algebra i Analiz, tom 27 (2015), nomer 3.
Journal: St. Petersburg Math. J. 27 (2016), 495-508
MSC (2010): Primary 35R35
DOI: https://doi.org/10.1090/spmj/1400
Published electronically: March 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some properties of the solutions of free obstacle-type boundary problems with two phases are considered for a class of heterogeneous quasilinear elliptic operators, including the $ p$-Laplacian operator with $ 1<p<\infty $. Under a natural nondegeneracy assumption on the interface, when the level set of the change of phase has null Lebesgue measure, a continuous dependence result is proved for the characteristic functions of each phase and sharp estimates are established on the variation of its Lebesgue measure with respect to the $ L^1$-variation of the data, in a rather general framework. For elliptic quasilinear equations whose heterogeneities have appropriate integrable derivatives, it is shown that the characteristic functions of both phases are of bounded variation for the general data with bounded variation. This extends recent results for the obstacle problem and is a first result on the regularity of the free boundary of the heterogeneous two phases problem, which is therefore an interface locally of class $ C^1$ up to a possible singular set of null perimeter.


References [Enhancements On Off] (What's this?)

  • 1. F. Andreu, N. Igbida, J. M. Mazón, and J. Toledo, $ L^1$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 1, 61-89. MR 2286559
  • 2. Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, and J. L. Vazquez, An $ L^1$-existence theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241-273. MR 1354907
  • 3. P. Bénilan and M. G. Crandall, Completely accretive operators, Semigroup Theory and Evolution Equations, Lecture Notes Pure Appl., vol. 135, Dekker, New York, 1991, pp. 41-76. MR 1164641
  • 4. H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/74), 831-844. MR 0361436
  • 5. H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in $ L^1$, J. Math. Soc. Japan 25 (1973), 565-590. MR 0336050
  • 6. S. Challal, A. Lyaghfouri, J. F. Rodrigues, and R. Teymurazyan, On the regularity of the free boundary for quasilinear obstacle problems, Interfaces Free Bound. 16 (2014), no. 3, 359-395. MR 3264794
  • 7. K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), no. 2, 117-146. MR 562547
  • 8. E. DiBenedetto, $ C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827-850. MR 709038
  • 9. G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972. MR 0464857
  • 10. L. Evans and R. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Ration, FL, 1992. MR 1158660
  • 11. E. Giusti, Minimal surfaces and functions of bounded variation, Monogr. Math., vol. 80, Birkhäuser, Basel, 1984. MR 775682 (87a:58041)
  • 12. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1964; English transl., Akad. Press, New York, 1968. MR 0211073 (35:1955)
  • 13. G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203-1219. MR 969499
  • 14. J. -L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. MR 0259693 (41:4326)
  • 15. C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Grundleheren Math. Wiss, Bd. 130, Springer-Verlag, New York, 1966. MR 0202511
  • 16. A. Petrosyan, H. Shahgholian, and N. N. Ural'tseva, Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., vol. 136, Amer. Math. Soc., Providence, RI, 2012. MR 2962060
  • 17. H. Shahgholian, N. N. Ural'tseva, and G. Weiss, The two-phase membrane problem-regularity of the free boundaries in higher dimensions, Int. Math. Res. Not. IMRN 2007, no. 8, Art. ID rnm026. MR 2340105
  • 18. J. F. Rodrigues, Obstacle problems in mathematical physics, North-Holland Math. Stud., vol. 134, Amsterdam, North-Holland Publ., 1987. MR 880369
  • 19. -, Variational methods in the Stefan problem, Phase Transitions and Hysteresis (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1584, Springer, Berlin, 1994, 147-212. MR 1321833
  • 20. -, Reaction-diffusion: from systems to nonlocal equations in a class of free boundary problems, Internat. Conf. Reaction-Diffusion Systems: Theory and Applications (Kyoto, 2001), Surikaisekikenkyusho Kokyuroku 1249 (2002), 72-89. MR 1924183
  • 21. -, Stability remarks to the obstacle problem for $ p$-Laplacian type equations, Calc. Var. Partial. Differential Equ. 23 (2005), no. 1, 51-65. MR 2133661
  • 22. T. Roubiček, Nonlinear partial differential equations with applications, Intern. Ser. Numerical Math., vol. 153, 2nd ed., Birkäuser, Basel, 2013. MR 3014456
  • 23. P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51, (1984), no. 1, 126-150. MR 727034
  • 24. N. N. Ural'tseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 7 (1968), 184-222. (Russian) MR 0244628
  • 25. G. Weiss, An obstacle-problem-like equation with two phases: point wise regularity of the solution and an estimate of the Hausdorff dimension of the free boundary, Interfaces Free Bound. 3 (2001), no. 2, 121-128. MR 1825655
  • 26. P. Wittbold, Nonlinear diffusion with absorption, Potential Anal. 7 (1997), no. 1, 437-465. MR 1462580

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35R35

Retrieve articles in all journals with MSC (2010): 35R35


Additional Information

J. F. Rodrigues
Affiliation: University of Lisbon/CMAF-FCiências, Lisbon, Portugal
Email: jfrodrigues@ciencias.ulisboa.pt

DOI: https://doi.org/10.1090/spmj/1400
Keywords: Free boundary problems, quasilinear elliptic operator, $p$-Laplacian, obstacle problem
Received by editor(s): January 19, 2015
Published electronically: March 30, 2016
Dedicated: Dedicated to Nina N. Ural’tseva on the occasion of her 80th birthday
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society