Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Narrow Domains and the Harnack Inequality for Elliptic Equations


Author: M. V. Safonov
Original publication: Algebra i Analiz, tom 27 (2015), nomer 3.
Journal: St. Petersburg Math. J. 27 (2016), 509-522
MSC (2010): Primary 35J15; Secondary 35B45, 35B65
DOI: https://doi.org/10.1090/spmj/1401
Published electronically: March 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a direct proof of Moser's Harnack inequality that does not involve iterations. The method is based on a recursive estimate for solutions in domains of small measure. Such estimates can also be useful for other applications.


References [Enhancements On Off] (What's this?)

  • [A63] A. D. Aleksandrov, Uniqueness conditions and bounds for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18 (1963), no. 3, 5-29; English transl., Amer. Math. Soc. Transl. (2) 68 (1968), 89-119. MR 0164135
  • [DG57] E. De Giorgi, Sulla differenziabilità e l`analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43. MR 0093649
  • [E] L. C. Evans, Partial differential equations, 2nd ed., Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 2010. MR 2597943
  • [FS01] E. Ferretti and M. V. Safonov, Growth theorems and Harnack inequalities for second order parabolic equations, Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2011, pp. 87-112. MR 1840429
  • [HL] Q. Han and F. Lin, Elliptic partial differential equations, Courant Lecture Notes in Math., vol. 1, Amer. Math. Soc., Providence, RI, 1997. MR 1669352
  • [GT] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren Math. Wiss., Bd. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • [K85] N. V. Krylov, Second-order nonlinear elliptic and parabolic equations, Nauka, Moscow, 1985; English transl., Reidel, Dordrecht, 1987. MR 815513
  • [KS80] N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR. Mat. 44 (1980), no. 1, 161-175; English transl., Math. USSR-Izv. 16 (1981), no. 1, 151-164. MR 563790
  • [La71] E. M. Landis, Second order equations of elliptic and parabolic type, Nauka, Moscow, 1971; English transl., Transl. Math. Monogr., vol. 171, Amer. Math. Soc., Providence, RI, 1998. MR 1487894 (98k:35034)
  • [LSU] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967; English transl., Transl. Math. Monogr., vol. 25, Amer. Math. Soc., Providence, RI, 1968. MR 0241821 (39:3159b)
  • [LU] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Nauka, Moscow, 1964; English transl., Acad. Press, New York, 1968. MR 0244627
  • [M60] J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468. MR 0170091
  • [M61] -, On Harnack's inequality for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. MR 0159138 (28:2356)
  • [M64] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134; and correction in: Comm. Pure Appl. Math. 20 (1967), 231-236. MR 0159139 (28:2357); MR 0203268 (34:3121)
  • [S80] M. V. Safonov, Harnak's inequality for elliptic equations and Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 272-287; English transl., J. Soviet Math. 21 (1983), no. 5, 851-863. MR 579490

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J15, 35B45, 35B65

Retrieve articles in all journals with MSC (2010): 35J15, 35B45, 35B65


Additional Information

M. V. Safonov
Affiliation: School of Mathematics, University of Minnesota
Email: safonov@math.umn.edu

DOI: https://doi.org/10.1090/spmj/1401
Keywords: Second-order elliptic equations, Harnack inequality, measurable coefficients
Received by editor(s): February 19, 2015
Published electronically: March 30, 2016
Dedicated: Dedicated to Nina N. Ural’tseva
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society