Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Narrow Domains and the Harnack Inequality for Elliptic Equations
HTML articles powered by AMS MathViewer

by M. V. Safonov
St. Petersburg Math. J. 27 (2016), 509-522
DOI: https://doi.org/10.1090/spmj/1401
Published electronically: March 30, 2016

Abstract:

We present a direct proof of Moser’s Harnack inequality that does not involve iterations. The method is based on a recursive estimate for solutions in domains of small measure. Such estimates can also be useful for other applications.
References
  • A. D. Aleksandrov, Uniqueness conditions and bounds for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18 (1963), no. 3, 5–29 (Russian, with English summary). MR 0164135
  • Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43 (Italian). MR 0093649
  • Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
  • E. Ferretti and M. V. Safonov, Growth theorems and Harnack inequality for second order parabolic equations, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000) Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 87–112. MR 1840429, DOI 10.1090/conm/277/04540
  • Qing Han and Fanghua Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997. MR 1669352
  • David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
  • N. V. Krylov, Nelineĭnye èllipticheskie i parabolicheskie uravneniya vtorogo poryadka, “Nauka”, Moscow, 1985 (Russian). MR 815513
  • N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
  • E. M. Landis, Second order equations of elliptic and parabolic type, Translations of Mathematical Monographs, vol. 171, American Mathematical Society, Providence, RI, 1998. Translated from the 1971 Russian original by Tamara Rozhkovskaya; With a preface by Nina Ural′tseva. MR 1487894, DOI 10.1090/mmono/171
  • O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
  • Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
  • Jürgen Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457–468. MR 170091, DOI 10.1002/cpa.3160130308
  • Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
  • Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
  • M. V. Safonov, Harnack’s inequality for elliptic equations and Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 272–287, 312 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 12. MR 579490
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J15, 35B45, 35B65
  • Retrieve articles in all journals with MSC (2010): 35J15, 35B45, 35B65
Bibliographic Information
  • M. V. Safonov
  • Affiliation: School of Mathematics, University of Minnesota
  • Email: safonov@math.umn.edu
  • Received by editor(s): February 19, 2015
  • Published electronically: March 30, 2016

  • Dedicated: Dedicated to Nina N. Ural’tseva
  • © Copyright 2016 American Mathematical Society
  • Journal: St. Petersburg Math. J. 27 (2016), 509-522
  • MSC (2010): Primary 35J15; Secondary 35B45, 35B65
  • DOI: https://doi.org/10.1090/spmj/1401
  • MathSciNet review: 3570964