Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 


Geometric properties of systems of vector states and expansion of states in Pettis integrals

Authors: G. G. Amosov and V. Zh. Sakbaev
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 27 (2015), nomer 4.
Journal: St. Petersburg Math. J. 27 (2016), 589-597
MSC (2010): Primary 46L30
Published electronically: June 2, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The relationship is studied between the geometry ofsystems unit vectors in Hilbert space and the state on the algebra of bounded operators that is obtained by integration of the vector states determined by the system in question with respect to a finitely additive measure on the set of natural numbers.

References [Enhancements On Off] (What's this?)

  • 1. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Texts Monogr. Phys., Springer-Verlag, New York-Heidelberg, 1979. MR 545651
  • 2. A. N. Sherstnev, Methods of bilinear forms in non-commutative measure and integral theory, Fizmatlit, Moscow, 2008.
  • 3. V. Zh. Sakbaev, On the set of quantum states and its averaged dynamic transformations, Izv. Vyssh. Uchebn. Zaved. Mat. 2011, no. 10, 48-58; English transl., Russian Math. (Iz. VUZ) 55 (2011), no. 10, 41-50. MR 2918336
  • 4. G. G. Amosov and U. Zh. Sakbaev, On analogs of spectral decomposition of a quantum state, Mat. Zametki 93 (2013), no. 3, 323-332; English transl., Math. Notes 93 (2013), no. 3, 351-359. MR 3205980
  • 5. N. Bourbaki, General topology, Springer-Verlag, Berlin, 1998. MR 1726872 (2000h:54001b)
  • 6. N. Dunford and S. T. Schwartz, Linear operators. I. General Theory, Pure Appl. Math., vol. 7, Intersci. Publ., New York, 1958. MR 0117523
  • 7. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1958), 46-66. MR 0045194
  • 8. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, Nauka, Moscow, 1965; English transl., Transl. Math. Monogr., vol. 18, Amer. Math. Soc., Providence, RI, 1969. MR 0246142 (39:7447)
  • 9. I. Chalendar, E. Fricain, and J. R. Partington, Overcompleteness of sequences of reproducing kernels in model spaces, Integral Equations Operator Theory 56 (2006), no. 1, 45-56. MR 2256996

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 46L30

Retrieve articles in all journals with MSC (2010): 46L30

Additional Information

G. G. Amosov
Affiliation: Steklov Mathematical institute, Russian Academy of Sciences, 9 Gubkin str., 119991 Moscow, Russia; St.-Petersburg state university, 7–9 Universitetskaya nab., 199034 St.-Petersburg, Russia; Moscow physicotechnical institute, 9 Institutskiĭ per., 141700 Dolgoprudnyĭ, Russia

V. Zh. Sakbaev
Affiliation: Moscow physicotechnical institute, 9 Institutskiĭ per., 141700 Dolgoprudnyĭ, Russia

Keywords: Finitely additive measure, ultrafilter, Pettis integral, state on the algebra of bounded operators
Received by editor(s): May 23, 2014
Published electronically: June 2, 2016
Additional Notes: Work of the second author was supported by RNF grant no. 14-11-00687
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society