Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Example of a nonrectifiable Nevanlinna contour


Author: M. Ya. Mazalov
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 27 (2015), nomer 4.
Journal: St. Petersburg Math. J. 27 (2016), 625-630
MSC (2010): Primary 30C20
DOI: https://doi.org/10.1090/spmj/1409
Published electronically: June 2, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nevanlinna contours (and domains) were introduced by K. Yu. Fedorovskiĭ in connection with the problem of uniform approximation of continuous functions by polyanalytic polynomials; also, these contours are related to pseudocontinuation of analytic functions, to the theory of model spaces, etc. An example of a nonrectifiable Nevanlinna contour is constructed in this paper for the first time.


References [Enhancements On Off] (What's this?)

  • 1. M. Ya. Mazalov, P. V. Paramonov, and K. Yu. Fedorovskiĭ, Conditions for the $ C^m$-approximability of functions by solutions of elliptic equations, Uspekhi Mat. Nauk 67 (2012), no. 6, 53-100; English transl., Russian Math. Surveys 67 (2012), no. 6, 1023-1068. MR 3075077
  • 2. Kh. Kh. Karmona, P. V. Paramonov, and K. Yu. Fedorovskiĭ, Uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions, Mat. Sb. 193 (2002), no. 10, 75-98; English transl., Sb. Math. 193 (2002), no. 9-10, 1469-1492. MR 1937036
  • 3. P. Koosis, Introdaction to $ H^p$ spaces, London Math. Soc. Lecture Notes Ser., vol. 40, Cambridge Univ. Press, Cambridge, 1980. MR 565451
  • 4. R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), no. 1, 37-76. MR 0270196
  • 5. K. Yu. Fedorovskiĭ, On some properties and examples of Nevanlinna domains, Tr. Mat. Inst. Steklova 253 (2006), 204-213; English transl., Proc. Steklov Inst. Math. 253 (2006), no. 2, 186-194. MR 2338697
  • 6. A. D. Baranov and K. Yu. Fedorovskiĭ, Boundary regularity of Nevanlinna domains and univalent functions in model subspaces, Mat. Sb. 202 (2011), no. 12, 3-22; English transl., Sb. Math. 202 (2011), no. 11-12, 1723-1740. MR 2919247
  • 7. N. K. Nikol'skiĭ, Lectures on the shift operator, Nauka, Moscow, 1980; English transl., Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986. MR 0827223 (87i:47042)
  • 8. S. N. Mergelyan, Uniform approximations of functions of a complex variable, Uspekhi Mat. Nauk 7 (1952), no. 2, 31-122. (Russian) MR 0051921
  • 9. K. Yu. Fedorosvskiĭ, On uniform approximations of functions by $ n$-analytic polynomials on rectifiable contours in $ \mathbb{C}$, Mat. Zametki 59 (1996), no. 4, 604-610; English transl., Math. Notes 59 (1996), no. 3-4, 435-439. MR 1445202
  • 10. P. Davis, The Schwartz function and its applications, Carus Math. Monogr., vol. 17, Math. Assoc. Amer., Buffalo, N.Y., 1974. MR 0407252
  • 11. M. Ya. Mazalov, An example of a nonconstant bianalytic function vanishing everywhere on nowhere analytic boundary, Mat. Zametki 62 (1997), no. 4, 629-632; English transl., Math. Notes 62 (1997), no. 3-4, 524-526. MR 1620111
  • 12. K. Yu. Fedorosvskiĭ, Approximation and boundary properties of polyanalytic functions, Tr. Mat. Inst. Steklova 235 (2001), 262-271; English transl., Proc. Steklov Inst. Math. 235 (2001), no. 4, 251-260. MR 1886586
  • 13. I. I. Privalov, Boundary properties of analytic functions, 2nd ed., Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950. (Russian) MR 0047765

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30C20

Retrieve articles in all journals with MSC (2010): 30C20


Additional Information

M. Ya. Mazalov
Affiliation: National Research University “Moscow energy institute”, Energeticheskiĭ proezd 1, Smolensk, Russia
Email: maksimmazalov@yandex.ru

DOI: https://doi.org/10.1090/spmj/1409
Keywords: Nevanlinna contours and domains, conformal mapping, univalent functions, Blaschke condition, polyanalytic functions
Received by editor(s): February 10, 2015
Published electronically: June 2, 2016
Additional Notes: The author was supported in part by RFBR (grant no. 12-01-00434-a), and by the program “Leading Scientific Schools of the Russian Federation” (grant no. NSh-2900.2014.1)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society