Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Remarks on $ \mathrm{\mathbf A}_p$-regular lattices of measurable functions


Author: D. V. Rutsky
Translated by: the author
Original publication: Algebra i Analiz, tom 27 (2015), nomer 5.
Journal: St. Petersburg Math. J. 27 (2016), 813-823
MSC (2010): Primary 42B20; Secondary 46B42
DOI: https://doi.org/10.1090/spmj/1418
Published electronically: July 26, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Banach lattice $ X$ of measurable functions on a space of homogeneous type is said to be $ \mathrm {A}_p$-regular if every $ f \in X$ admits a majorant $ g \geq \vert f\vert$ belonging to the Muckenhoupt class $ \mathrm {A}_p$ with suitable control on the norm and the constant. It is well known that the $ \mathrm {A}_p$-regularity of the order dual $ X'$ of $ X$ implies the boundedness of the Hardy-Littlewood maximal operator on $ X^{\frac 1 p}$ for $ p > 1$ (equivalently, the $ \mathrm {A}_1$-regularity of this lattice), provided that $ X'$ is norming for $ X$. This result admits a partial converse and an interesting characterization: the $ \mathrm {A}_1$-regularity of $ X^{\frac 1 p}(\ell ^{p})$ implies the $ \mathrm {A}_p$-regularity of $ X'$, and for lattices $ X$ with the Fatou property these conditions are equivalent to the $ \mathrm {A}_1$-regularity of both $ X^{\frac 1 p}$ and $ \big (X^{\frac 1 p}\big )'$. As an application, an exact form of the self-duality of $ \mathrm {BMO}$-regularity is obtained, the $ \mathrm {A}_q$-regularity of the lattices $ \mathrm {L}_{\infty }(\ell ^p)$ for all $ 1 < p,q < \infty $ is established, and in many cases it is shown that the $ \mathrm {A}_1$-regularity of both $ Y$ and $ Y'$ yields the $ \mathrm {A}_1$-regularity of $ Y(\ell ^s)$ for all $ 1 < s < \infty $, which implies the boundedness of the Calderón-Zygmund operators in $ Y(\ell ^s)$.


References [Enhancements On Off] (What's this?)

  • 1. N. J. Kalton, Complex interpolation of Hardy-type subspaces, Math. Nachr. 171 (1995), 227-258. MR 1316360
  • 2. S. V. Kisliakov, Interpolation of $ H_p$-spaces: some recent developments, Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat Gan, 1999, pp. 102-140. MR 1707360
  • 3. G. Knese, J. E. McCarthy, and K. Moen, Unions of Lebesgue spaces and $ A_1$ majorants, Pacific J. Math. 280 (2016), no. 2, 411-432. MR 3453978
  • 4. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I and II, Springer, Berlin, 1996. MR 0540367, MR 0500056
  • 5. J. L. Rubio de Francia, Operators in Banach lattices and $ L^2$-inequalities, Math. Nachr. 133 (1987), 197-209. MR 912429
  • 6. D. V. Rutsky, Complex interpolation of $ A_1$-regular lattices, preprint, 2013, http://arxiv.org/ abs/1303.6347.
  • 7. -, $ A_1$-regularity and boundedness of Calderón-Zygmund operators, Studia Math. 221 (2014), no. 3, 231-247. MR 3208299
  • 8. -, $ A_1$-regularity and boundedness of Calderón-Zygmund operators. II, preprint, 2015, http://arxiv.org/abs/1505.00518.
  • 9. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton, NJ, 1993. MR 1232192
  • 10. S. V. Kislyakov, On BMO-regular lattices of measurable functions, Algebra i Analiz 14 (2002), no. 2, 117-135; English transl., St. Petersburg Math. J. 14 (2003), no. 2, 273-286. MR 1925883
  • 11. L. V. Kantorovich and G. P. Akilov, Functional analysis, BHV-Peterburg, St. Petersburg, 2004; English transl., Second ed., Pergamon Press, Oxford-Elmsford, NY, 1982. MR 664597
  • 12. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of linear operators, Nauka, Moscow, 1978; English transl., Transl. Math. Monogr., vol. 54, Amer. Math. Soc., Providence, RI, 1982. MR 0649411 (84j:46103)
  • 13. G. Ya. Lozanovskiĭ, A remark on a certain interpolation theorem of Calderón, Functcional. Anal. i Prilozen. 6 (1972), no. 4, 89-90; English transl., Funkcional. Anal. Appl. 6 (19720, no. 4, 333-334. MR 0312246
  • 14. D. V. Rutsky, BMO regularity in lattices of measurable functions on spaces of homogeneous type, Algebra i Analiz 23 (2011), no. 2, 248-295; English transl., St. Petersburg Math. J. 23 (2012), no. 2, 381-412. MR 2841677
  • 15. -, Weighted Calderón-Zygmund decomposition with some applications to interpolation, Zap. Nauch. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 424 (2014), 186-200; English transl., J. Math. Sci. (N.Y.) 209 (2015), no. 5, 783-791.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 42B20, 46B42

Retrieve articles in all journals with MSC (2010): 42B20, 46B42


Additional Information

D. V. Rutsky
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
Email: rutsky@pdmi.ras.ru

DOI: https://doi.org/10.1090/spmj/1418
Keywords: $\mathrm{A}_p$-regularity, $\mathrm{BMO}$-regularity, Hardy--Littlewood maximal operator, Calder\'on--Zygmund operators
Received by editor(s): February 10, 2015
Published electronically: July 26, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society