Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Logarithms of formal $ A$-modules in the case of small ramification

Authors: S. S. Afanas′eva and R. P. Vostokova
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 27 (2015), nomer 6.
Journal: St. Petersburg Math. J. 27 (2016), 863-868
MSC (2010): Primary 20G25
Published electronically: September 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Formal $ \mathcal {O}_0$-modules over the ring of integers $ \mathcal {O}$ of a local field, i.e., formal groups over $ \mathcal {O}$ with endomorphism ring including a fixed ring $ \mathcal {O}_0$ are studied. A complete description of the logarithms of all such modules is obtained in the case of small ramification. Earlier it was shown that in the case of small ramification ( $ e(\mathcal {O}/\mathcal {O}_0)<q$), any $ \mathcal {O}_0$-module is strictly isomorphic to an $ \mathcal {O}_0$-module the logarithm of which can be represented in the form $ vu^{-1}(X)$, where $ u$ and $ v$ are certain matrices over the ring of operators described in the paper. The result obtained in the present paper enables one to determine the type ($ u$ and $ v$) of a formal $ \mathcal {O}_0$-module by the form of its logarithm, and provides a way for constructing all formal $ \mathcal {O}_0$-modules.

References [Enhancements On Off] (What's this?)

  • 1. M. V. Bondarko and S. V. Vostokov, Explicit classification of formal groups over local fields, Tr. Mat. Inst. Steklova 241 (2003), 43-67; English transl., Proc. Steklov Inst. Math. 2003, no. 2, 35-37. MR 2024043
  • 2. M. V. Bondarko, Explicit classification of formal groups over complete discretely valued fields with imperfect residue field, Tr. S.-Peterburg. Mat. Obshch. 11 (2005), 1-36. (Russian) MR 2279302
  • 3. T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan. 22 (1970), 213-243. MR 0255551
  • 4. O. V. Demchenko, New relationships between formal Lubin-Tate groups and formal Honda groups, Algebra i Analiz 10 (1998), no. 5, 77-84; English transl., St. Petersburg Math. J. 10 (1999), no. 5, 785-789. MR 1659996
  • 5. S. V. Vostokov and O. V. Demchenko, An explicit formula for the Hilbert pairing of formal Honda groups, Zap. Nauchn. Sem. St.-Peterburg. Otdel. Math. Inst. Steklov. (POMI) 272 (2000), 86-128; English transl., J. Math. Sci. (N.Y.) 116 (2003), no. 1, 2926-2952. MR 1811794
  • 6. M. Hazewinkel, Formal groups and applications, Pure Appl. Math., vol. 78, Acad. Press, New York, 1978. MR 506881
  • 7. S. S. Afanas'eva and S. V. Vostokov, Classification of formal $ A$-modules in the case of small ramification, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 430 (2014), 5-12. (Russian)
  • 8. S. S. Afanas'eva, R. P. Vostokova, and G. K. Pak, Classification of logarithm of multidimensional formal group in a local field, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Math. Inst. Steklov. (POMI) 430 (2014), 13-17. (Russian)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 20G25

Retrieve articles in all journals with MSC (2010): 20G25

Additional Information

S. S. Afanas′eva
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ pr. 28, Petrodvorets, St. Petersburg 198504, Russia

R. P. Vostokova
Affiliation: D. F. Ustinov Baltic State Technical University “Voenmekh”, 1-ya Krasnoarmeiskaya ul. 1, St. Petersburg 198005, Russia

Keywords: Formal grous, formal modules, multidimensional formal groups
Received by editor(s): June 10, 2015
Published electronically: September 30, 2016
Additional Notes: Supported by RFBR (grant no. 14-01-00393).
The first author thanks Saint Petersburg State University for support.
Dedicated: To Sergeĭ Vladimirovich Vostokov on the occasion of his 70th anniversary
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society