Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

Riemann's zeta function and finite Dirichlet series


Author: Yu. V. Matiyasevich
Translated by: the author
Original publication: Algebra i Analiz, tom 27 (2015), nomer 6.
Journal: St. Petersburg Math. J. 27 (2016), 985-1002
MSC (2010): Primary 11M26; Secondary 11M06, 11M35, 11M41, 15A15, 11Y35
DOI: https://doi.org/10.1090/spmj/1431
Published electronically: September 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper describes computer experiments for calculating zeros and values of Riemann's zeta function and of its first derivative inside the critical strip and to the left of it with the help of finite Dirichlet series the coefficients of which are defined via initial nontrivial zeros of the zeta function.


References [Enhancements On Off] (What's this?)

  • 1. Gleb Beliakov and Yuri Matiyasevich, A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic, BIT 56 (2016), no. 1, 33–50. MR 3486452, https://doi.org/10.1007/s10543-015-0547-z
  • 2. -, Zeroes of Riemann's zeta function on the critical line with $ 40000$ decimal digits accuracy, Research Data Australia, http://hdl.handle.net/10536/DRO/DU:30056270, 2013.
  • 3. Gleb Beliakov and Yuri Matiyasevich, Approximation of Riemann’s zeta function by finite Dirichlet series: a multiprecision numerical approach, Exp. Math. 24 (2015), no. 2, 150–161. MR 3350522, https://doi.org/10.1080/10586458.2014.976801
  • 4. F. Johansson, Arb, http://fredrikj.net/arb/.
  • 5. Yu. Matiyasevich, Finite Dirichlet series with prescribed zeroes, http://logic.pdmi.ras.ru/~yumat/ personaljournal/finitedirichlet.
  • 6. -, New conjectures about zeroes of Riemann's zeta function, Depart. Math. Univ. Leicester, Research Reports MA12-03; http://www2.le.ac.uk/departments/mathematics/research/ research-reports-2/reports_2012/ma12-03, http://logic.pdmi.ras.ru/~yumat/talks/ leicester
    _2012/MA12_03Matiyasevich.pdf
    , 2012.
  • 7. -, Calculation of Riemann's zeta function via interpolating determinants, Max Planck Instit. Math., Bonn, Preprint 2013-18; http://www.mpim-bonn.mpg.de/preblob/5368, http://logic.pdmi.ras.ru/~yumat/talks/bonn_2013/5368.pdf, 2013.
  • 8. B. Riemann, Über die Anzhal der Primzahlen unter einer gegebenen Grösse, Monatsber. Berlin. Akad. (1859), 671-680.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11M26, 11M06, 11M35, 11M41, 15A15, 11Y35

Retrieve articles in all journals with MSC (2010): 11M26, 11M06, 11M35, 11M41, 15A15, 11Y35


Additional Information

Yu. V. Matiyasevich
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, Saint Petersburg 191023, Russia
Email: yumat@pdmi.ras.ru

DOI: https://doi.org/10.1090/spmj/1431
Keywords: Riemann's zeta function, finite Dirichlet series
Received by editor(s): June 1, 2015
Published electronically: September 30, 2016
Additional Notes: The research was partially supported by the Ministry of Education and Science of the Russian Federation (Grant 14.Z50.31.0030).
Dedicated: To the 70th anniversary of Sergey Vladimirovich Vostokov
Article copyright: © Copyright 2016 American Mathematical Society