Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Supercharacter theory for groups of invertible elements of reduced algebras


Author: A. N. Panov
Translated by: the author
Original publication: Algebra i Analiz, tom 27 (2015), nomer 6.
Journal: St. Petersburg Math. J. 27 (2016), 1035-1047
MSC (2010): Primary 20C15
DOI: https://doi.org/10.1090/spmj/1434
Published electronically: September 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A supercharacter theory is constructed for the group of invertible elements of a reduced algebra. For the case of the triangular group, the values of supercharacters on superclasses are calculated.


References [Enhancements On Off] (What's this?)

  • 1. C. A. M. André, Basic sums of coadjoint orbits of the unitriangular group, J. Algebra 176 (1995), no. 3, 959-1000. MR 1351371
  • 2. -, Basic character table of the unitriangular group, J. Algebra 241 (2001), no. 1, 437-471. MR 1839342
  • 3. -, Hecke algebras for the basic characters of the unitriangular group, Proc. Amer. Math. Soc. 132 (2004), no. 4, 987-996. MR 2045413
  • 4. P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2359-2392. MR 2373317
  • 5. Ning Yan, Representation theory of finite unipotent linear groups, Dissertation, 2001, arXiv: 1004.2674. MR 2702153
  • 6. M. Aguiar etc., Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, Adv. Math. 229 (2012), no. 4, 2310-2337. MR 2880223
  • 7. A. O. F. Hendrickson, Supercharacter theory costructions corresponding to Schur ring products, Comm. Algebra 40 (2012), no. 12, 4420-4438. MR 2989654
  • 8. S. Andrews, Supercharacter theory constructed by the method of little groups, 2014, arXiv: 1405.5472.
  • 9. A. Lang, Supercharacter theories and semidirect products, 2014, arXiv:1405.1764.
  • 10. R. S. Pierce, Associative algebras, Grad. Texts in Math., vol. 88, Stud. History Modern Sci., vol. 9, Springer-Verlag, New York, 1982. MR 674652
  • 11. Ju. Drozd and V. V. Kiričenko, Finite-dimensional algebras, Vishcha Shkola, Kiev, 1980; English transl., Springer-Verlag, Berlin, 1994. MR 1284468
  • 12. Ch. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure Appl. Math., vol. 11, Intersci. Publ., New-York, 1962. MR 0144979
  • 13. J.-P. Serre, Linear representations of finite groups, Grad. Texts in Math., vol. 42, Springer-Verlag, New York, 1977. MR 0450380

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 20C15

Retrieve articles in all journals with MSC (2010): 20C15


Additional Information

A. N. Panov
Affiliation: Samara State University, ul. Acad. Pavlova 1, 443011 Samara; Academician S. P. Korolev Samara State Aerospace University, Samara, Russia
Email: apanov@list.ru

DOI: https://doi.org/10.1090/spmj/1434
Keywords: Irreducible representations, supercharacter theory, reduced algebra, unitriangular group, algebra groups
Received by editor(s): May 15, 2015
Published electronically: September 30, 2016
Dedicated: To Sergeĭ Vladimirovich Vostokov on the occasion of his 70th birthday
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society