Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Localization criterion for the spectrum of the Sturm-Liouville operator on a curve


Author: Kh. K. Ishkin
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 28 (2016), nomer 1.
Journal: St. Petersburg Math. J. 28 (2017), 37-63
MSC (2010): Primary 34B24
DOI: https://doi.org/10.1090/spmj/1438
Published electronically: November 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two spectrum localization criteria are obtained for the Sturm-Liouville operator on a piecewise smooth curve. The first of them generalizes Marchenko's well-known criterion. The second provides a necessary and sufficient condition on the potential under which the spectrum is asymptotically localized near a ray in the sense of a regularly distributed set relative to the order $ \rho =1/2$, thus confirming Fedoryuk's conjecture about the absence, in the general case, of an asymptotic formula for the spectrum of the problem $ - v''= \mu \rho (x) v$, $ 0<x<1$, $ v(0)=v(1)=0$.


References [Enhancements On Off] (What's this?)

  • 1. M. V. Fedoryuk, Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983. (Russian) MR 732787
  • 2. R. E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151-190. MR 0000084
  • 3. M. V. Fedoryuk, Asymptotics: integrals and series, Nauka, Moscow, 1987. (Russian) MR 950167
  • 4. V. A. Marchenko, Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977; English transl., AMS Chelsea Publ., Providence, RI, 2011. MR 0481179
  • 5. A. A. Shkalikov, On the limit behavior of the spectrum for large values of the parameter of a model problem, Mat. Zametki 62 (1997), no. 6, 950-953; English transl., Math. Notes 62 (1997), no. 5-6, 796-799. MR 1635218
  • 6. S. A. Stepin, A model of the transition from a discrete spectrum to a continuous spectrum in singular perturbation theory, Fundam. Prikl. Mat. 3 (1997), no. 4, 1199-1227. (Russian) MR 1794510
  • 7. A. A. Shkalikov, Spectral portraits of the Orr-Sommerfeld operator at large Reynolds numbers, Sovrem. Mat. Fundam. Napravl. 3 (2003), 89-112; English transl., J. Math. Sci. (N.Y.) 124 (2004), no. 6, 5417-5441. MR 2129146
  • 8. A. V. D'yachenko and A. A. Shkalikov, On a model problem for the Orr-Sommerfeld equation with a linear profile, Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 71-75; English transl., Funct. Anal. Appl. 36 (2002), no. 3, 228-232. MR 1935907
  • 9. Kh. K. Ishkin, Conditions for the localization of the limit spectrum of a model operator associated with the Orr-Sommerfeld equation, Dokl. Akad. Nauk 445 (2012), no. 5, 506-509; English transl., Dokl. Math. 86 (2012), no. 1, 549-552. MR 3050519
  • 10. M. A. Naimark, Linear differential operators, 2nd ed., revised and augmented, Nauka, Moscow, 1969; English transl., Frederick Ungar Publ. Co., New York, 1968. MR 0353061
  • 11. T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren Math. Wiss., Bd. 132, Springer-Verlag, New York, 1966. MR 0203473
  • 12. I. I. Privalov, Boundary properties of analytic functions, Gosudarstv. Izdat. Tekn.-Teor. Lit., Moscow-Leningrad, 1950. (Russian) MR 0047765
  • 13. A. A. Oblomkov, Monodromy-free Schrödinger operators with quadratically increasing potential, Teoret. Mat. Fiz. 121 (1999), no. 3, 374-386; English transl., Theoret. and Math. Phys. 121 (1999), no. 3, 1574-1584. MR 1761140
  • 14. J. J. Duistermaat and F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240. MR 826863
  • 15. Kh. K. Ishkin, On necessary conditions for the localization of the spectrum of the Sturm-Liouville problem on a curve, Mat. Zametki 78 (2005), no. 1, 72-84; English transl., Math. Notes 78 (2005), no. 1-2, 64-75. MR 2244871
  • 16. -, On the uniqueness criterion for solutions of the Sturm--Liouville equation, Mat. Zametki 84 (2008), no. 4, 552-566; English transl., Math. Notes 84 (2008), no.3-4, 515-528. MR 2485195
  • 17. A. Aslanyan and E. B. Davies, Spectral instability for some Schrödinger operators, Numer. Math. 85 (2000), no. 4, 525-552. MR 1770658
  • 18. B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956; English transl., Transl. Math. Monogr., vol. 5, Amer. Math. Soc., Providence, RI, 1980. MR 00087740 (19:402c)
  • 19. Kh. K. Ishkin, A localization criterion for the eigenvalues of a spectrally unstable operator, Dokl. Akad. Nauk 429 (2009), no. 3, 301-304; English transl., Dokl. Math. 80 (2009), no. 3, 829-832. MR 2640601
  • 20. -, On a trivial monodromy criterion for the Sturm-Liouville equation, Mat. Zametki 94 (2013), no. 4, 552-568; English transl., Math. Notes 94 (2013), no. 3-4, 508-523. MR 3423282
  • 21. B. M. Levitan and I. S. Sargsyan, Sturm-Liouville and Dirac operators, Nauka, Moscow, 1988; English transl., Math. Appl. (Soviet Ser.), vol. 59, Kluwer Acad. Publ. Group, Dordrecht, 1991. MR 0958344 (90c:34028)
  • 22. V. E. Ljance, An analog of the inverse problem of scattering theory for a non-selfadjoint operator, Mat. Sb. (N.S.) 72 (1967), no. 4, 537-557; English transl., Math. USSR-Sb. 1 (1967), no. 4, 485-504. MR 0208055
  • 23. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskiĭ, Theory of solitons. The method of the inverse problem, Nauka, Moscow, 1980; English transl., Contemporary Soviet Math., Consultant Bureau, New York, 1984. MR 779467
  • 24. M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Akad. Press., New York-London, 1977. MR 0493419
  • 25. R. E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. 40 (1934), no. 8, 545-582. MR 1562910
  • 26. A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Uspekhi Mat. Nauk 7 (1952), no. 6, 3-96. (Russian) MR 0054137
  • 27. V. A. Sadovnichiĭ and V. A. Ljubiskin, Regularized sums of the roots of a class of entire function of expotential type, Dokl. Akad. Nauk SSSR 256 (1981), no. 4, 794-798. (Russian) MR 601662
  • 28. R. Bellman and K. L. Cooke, Differential-difference equations, Acad. Press, New York-London, 1963. MR 0147745
  • 29. V. A. Sadovnichiĭ, V. A. Lyubishkin, and Yu. Belabbasi, Zeros of entire functions of a certain class. Tr. Sem. Petrovsk. 8 (1982), 211-217. (Russian) MR 673166
  • 30. E. B. Davies, Eigenvalues of an elliptic system, Math. Z. 243 (2003), 719-743. MR 1974580
  • 31. V. B. Lidskiĭ and V. A. Sadovnichiĭ, A regularized sums of roots of a class of entire functions, Functional. Anal. i Prilozhen. 1 (1967), no. 2, 52-59; English transl., Funct. Anal. Appl. 1 (1967), no. 2, 133-139. MR 0213520
  • 32. Kh. K. Ishkin, On the localization of the spectrum of a problem with a complex weight, Fundam. Prikl. Mat. 12 (2006), no. 5, 49-64; English transl., J. Math. Sci. (N.Y.) 150 (2008), no. 6, 2488-2499. MR 2314114

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 34B24

Retrieve articles in all journals with MSC (2010): 34B24


Additional Information

Kh. K. Ishkin
Affiliation: Baskir State university, A. Z. Validi str. 32, 450074 Ufa, Russia
Email: Ishkin62@mail.ru

DOI: https://doi.org/10.1090/spmj/1438
Keywords: Nonselfadjoint differential operators, spectral instability, localization of the spectrum
Received by editor(s): February 6, 2014
Published electronically: November 30, 2016
Additional Notes: Supported by the Ministry of Education and Science of RF (grant no. 01201456408) and by RFBR (grant no. 15-01-01095)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society