Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign


Authors: C. Bandle and A. Wagner
Original publication: Algebra i Analiz, tom 28 (2016), nomer 2.
Journal: St. Petersburg Math. J. 28 (2017), 153-170
MSC (2010): Primary 35Q05
DOI: https://doi.org/10.1090/spmj/1443
Published electronically: February 15, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The energy of the torsion problem with Robin boundary conditions is considered in the case where the solution is not a minimizer. Its dependence on the volume of the domain and the surface area of the boundary is discussed. In contrast to the case of positive elasticity constants, the ball does not provide a minimum. For nearly spherical domains and elasticity constants close to zero, the energy is the largest for the ball. This result is true for general domains in the plane under an additional condition on the first nontrivial Steklov eigenvalue. For more negative elasticity constants the situation is more involved and is strongly related to the particular domain perturbation. The methods used in the paper are the series representation of the solution in terms of Steklov eigenfunctions, the first and second shape derivatives, and an isoperimetric inequality of Payne and Weinberger for the torsional rigidity.


References [Enhancements On Off] (What's this?)

  • 1. G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim. 25 (2004), no. 3-4, 321-348. MR 2072072
  • 2. -, Sharp boundary trace inequalities, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 1, 1-12. MR 3164533
  • 3. C. Bandle and A. Wagner, Second variation of domain functionals and applications to problems with Robin boundary conditions, J. Optim. Theory Appl. 167 (2015), no. 2, 430-463. MR 3412445
  • 4. -, Isoperimetric inequalities for the principal eigenvalue of a membrane and the energy of problems with Robin boundary conditions, J. Convex Anal. 22 (2015), no. 3, 627-640. MR 3400146
  • 5. M. Bareket, On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal. 8 (1977), no. 2, 280-287. MR 0430552
  • 6. F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, ZAMM Z. Angew. Math. Mech. 81 (2001), no. 1, 69-71. MR 1808500
  • 7. D. Bucur and A. Giacomini, Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 757-824. MR 3375539
  • 8. Ph. Clément and L. A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (1979), no. 2, 218-229. MR 550042
  • 9. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Intersci. Publ., New York, 1953. MR 0065391
  • 10. E. N. Dancer and D. Daners, Domain perturbations for elllptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), no. 1, 86-132. MR 1458457
  • 11. V. Ferone, C. Nitsch, and C. Trombetti, On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue, Commun. Pure Appl. Anal. 14 (2015), no, 1, 63-82. MR 3299025
  • 12. P. Freitas and D. Krejcirik, The first Robin eigenvalue with a negative boundary parameter, Preprint, arXiv:1403.6666.
  • 13. G. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren Math. Wiss., Bd. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 14. T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., Bd. 132, Springer-Verlag, New York, 1966. MR 0203473
  • 15. V. G. Mazya, Sobolev spaces, Leningrad. Univ., Leningrad, 1985; English transl., Springer Ser. Sov. Math., Springer, Berlin, 1985. MR 817985
  • 16. L. E. Payne and H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2 (1961), 210-216. MR 0149735
  • 17. P. W. Schaefer and R. P. Sperb, Maximum principles for some functionals of elliptic boundary value problems, Arch. Rational Mech. Anal. 61 (1976), no. 1, 65-76. MR 0404853
  • 18. J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318. MR 0333220
  • 19. R. Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal. 3 (1954), 745-753. MR 0064989

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35Q05

Retrieve articles in all journals with MSC (2010): 35Q05


Additional Information

C. Bandle
Affiliation: Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
Email: catherine.bandle@unibas.ch

A. Wagner
Affiliation: Institut für Mathematik, RWTH Aachen, Templergraben 55, D-52062 Aachen, Germany
Email: alfred.wagner1@gmail.com

DOI: https://doi.org/10.1090/spmj/1443
Keywords: Robin boundary condition, energy representation, Steklov eigenfunction, extremal domain, first and second domain variation, optimality conditions
Received by editor(s): November 30, 2015
Published electronically: February 15, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society