Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Real algebraic and pseudoholomorphic curves on the quadratic cone and smoothings of the singularity $ X_{21}$


Authors: S. Yu. Orevkov and E. I. Shustin
Translated by: the authors
Original publication: Algebra i Analiz, tom 28 (2016), nomer 2.
Journal: St. Petersburg Math. J. 28 (2017), 225-257
MSC (2010): Primary 14P25, 57M25; Secondary 14H20, 53D99
DOI: https://doi.org/10.1090/spmj/1448
Published electronically: February 15, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A fiberwise isotopy classification is completed for the smooth real algebraic and pseudoholomorphic curves of degree 8 on the quadratic cone that have a specially shaped oval crossing a given generating line of the cone at four real points. This classification is linked with an isotopy classification of smoothings of a real plane curve singularity that is the union of four smooth real local branches quadratically tangent to each other (the singularity $ X_{21}$).


References [Enhancements On Off] (What's this?)

  • 1. A. Akyol and A. Degtyarev, Geography of irreducible plane sextics, Proc. London Math. Soc.(3) 111 (2015), no. 6, 1307-1337. MR 3447795
  • 2. V. I. Arnol'd, A. N. Varchenko and S. M. Guseĭn-Zade, Singularities of differentiable mappings. Vol. 1. The classification of critical points, caustics and wave fronts, Nauka, Moscow, 1982; English transl., Monogr. Math., vol. 82, Birkhaüser, Boston, MA, 1985. MR 0777682
  • 3. E. Artal Bartolo, J. Carmona Ruber, and J. I. Cogolludo Augustin, On sextic curves with big Milnor number, Trend in Singularities, Trends Math., Birkhäuser, Basel, 2002, pp. 1-29. MR 1900779
  • 4. E. Brugallé, Symmetric plane curves of degree 7: pseudoholomorphic and algebraic classifications, J. Reine Angew. Math. 612 (2007), 129-171. MR 2364076
  • 5. L. Caporaso and J. Harris, Parameter spaces for curves on surfaces and enumeration of rational curves, Compositio Math.  113 (1998), no. 2, 155-208. MR 1639183
  • 6. A. Degtyarev, On the Artal-Carmona-Cogolludo construction, J. Knot Theory Ramifications  23 (2014), no. 5, 1450028, 35 pp. MR 3233625
  • 7. I. V. Dolgachev, Classical algebraic geometry: a modern view, Cambridge Univ. Press, Cambridge, 2012. MR 2964027
  • 8. S. Fiedler-Le Touzé and S. Yu. Orevkov, A flexible affine $ M$-sextic which is algebraically unrealizable, J. Algebraic Geom.  11 (2002), no. 2, 293-310. MR 1874116
  • 9. G. M. Greuel and U. Karras, Families of varieties with prescribed singularities, Compositio Math.  69 (1989), no. 1, 83-110. MR 986814
  • 10. G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007. MR 2290112
  • 11. D. A. Gudkov, G. A. Utkin, and M. L. Tai, A complete classification of indecomposable curves of the fourth order, Mat. Sb.  69 (1966), no. 2, 222-256. (Russian) MR 0198335
  • 12. D. A. Gudkov and E. I. Shustin, On the intersection of the close algebraic curves, Topology (Leningrad, 1982), Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 278-289. MR 770248
  • 13. E. I. Kharlamov, S. Yu. Orevkov, and E. I. Shustin, Singularity which has no $ M$-smoothing, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 273-309. MR 1733581
  • 14. V. M. Kharlamov and O. Ya. Viro, Extensions of the Gudkov-Rokhlin congruence, Topology and Geometry Rohlin Semin., Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, 357-406. MR 970085
  • 15. A. B. Korchagin, New $ M$-curves of degrees $ 8$ and $ 9$, Dokl. Akad. Nauk SSSR  306 (1989), no. 5, 1038-1041; English transl., Soviet Math. Dokl. 39 (1989), no. 3, 569-572. MR 1014756
  • 16. -, Construction of new curves of $ 9$th degree, Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 296-307. MR 1226261 (94g:14032)
  • 17. A. B. Korchagin and E. I. Shustin, Sixth-degree affine curves and smoothings of a nongenerate sixth-order singular point, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1181-1199; English transl., Math. USSR-Izv. 33 (1989), no. 3, 501-520. MR 984215
  • 18. E. I. Moody, Notes on the Bertini involution, Bull. Amer. Math. Soc.  49 (1943), 433-436. MR 0008163
  • 19. S. Yu. Orevkov, Classification of flexible $ M$-curves of degree $ 8$ up to isotopy, Geom. Funct. Anal.  12 (2002), no. 4, 723-755. MR 1935547
  • 20. S. Yu. Orevkov, Construction of overangements of an $ M$-quartic and an $ M$-cubic with a maximal intersection of an oval and the odd branch, Vestik Nizegorod. Gos. Univ. Mat. Modelirovanie Optim. Upravlenie  2002, vyp. 1, 12-48. (Russian)
  • 21. -, Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. de Toulouse. Math. (6)  12 (2003), no. 4, 517-531. MR 2060598
  • 22. -, Quasipositivity problem for $ 3$-braids, Turkish J. Math.  28 (2004), no. 1, 89-93. MR 2056762
  • 23. -, Arrangements of an $ M$-quintic with respect to a conic that maximally intersect the odd branch of the quintic, Algebra i Analiz 19 (2007), no. 4, 174-242; English transl., St. Petersburg. Math. J. 19 (2008), no. 4, 625-674. MR 2381938
  • 24. -, Algorithmic recognition of quasipositive braids of algebraic length two, J. Algebra  423 (2015), 1080-1108. MR 3283750
  • 25. S. Yu. Orevkov and E. I. Shustin, Flexible, algebraically unrealizable curves: rehabilitation of the Hilbert-Rohn-Gudkov approach, J. Reine Angew. Math.  551 (2002), 145-172. MR 1932177
  • 26. -, Pseudoholomorphic, algebraically unrealizable curves, Mosc. Math. J.  3 (2003), no. 3, 1053-1083. MR 2078573
  • 27. J.-J. Risler, Un analogue local du théorème de Harnack, Invent. Math. 89 (1987), no. 1, 119-137. MR 892188
  • 28. E. I. Shustin, The Hilbert-Rohn method and smoothings of real algebraic curves singular points, Dokl. Akad. Nauk SSSR  281 (1983), no. 1, 33-36; English transl., Soviet Math. Dokl. 31 (1983), no. 2, 282-286. MR 782044
  • 29. -, Versal deformations in the space of plane curves of fixed degree, Funktsional. Anal. i Prilozhen.  21 (1985), no. 1, 90-91; English transl., Funct. Anal. Appl. 21 (1987), 82-84. MR 888028
  • 30. -, Gluing of singular and critical points, Topology  37 (1998), no. 1, 195-217. MR 1480886
  • 31. O. Viro, Patchworking real algebraic varieties, Preprint, arXiv:math.AG/0611382.
  • 32. -, Real plane algebraic curves: constructions with controlled topology, Algebra i Analiz 1 (1989), no. 5, 1-73; English transl., Leningrad Math. J. 1 (1990), no. 5, 1059-1134. MR 1036837
  • 33. J.-Y. Welschinger, Courbes algébriques réelles et courbes flexibles sur les surfaces réglées de base $ \mathbb{C}P^1$, Proc. London Math. Soc. (3)  85 (2002), no. 2, 367-392. MR 1912055
  • 34. B. L. van der Waerden, Einfürung in die algebraische Geometrie, 2nd ed., Springer, 1974.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 14P25, 57M25, 14H20, 53D99

Retrieve articles in all journals with MSC (2010): 14P25, 57M25, 14H20, 53D99


Additional Information

S. Yu. Orevkov
Affiliation: Steklov Mathematical Institute, Gubkina 8, 119991 Moscow, Russia; IMT, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France; National Research University Higher School of Economics, Vavilova 7, 117312 Moscow, Russia
Email: orevkov@math.ups-tlse.fr

E. I. Shustin
Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
Email: shustin@math.tau.ac.il

DOI: https://doi.org/10.1090/spmj/1448
Received by editor(s): September 1, 2015
Published electronically: February 15, 2017
Additional Notes: The first author has been supported by RSF grant, project 14-21-00053 dated 11.08.14
The second author has been supported by the German–Israeli Foundation, grant no. 1174-197.6/2011, and by the Hermann–Minkowski–Minerva Center for Geometry at the Tel Aviv University. The main part of this work was performed during the second author’s visit to the Centre Interfacultaire Bernoulli at the École Polytechnique Fedérale de Lausanne in March-May 2015 and to the Max-Planck Institut für Mathematik, Bonn, in August-September 2015. The second author is very grateful to CIB-EPFL and MPI for hospitality and excellent working conditions. Special thanks are due to the referee, who pointed out several mistakes in the preliminary version of the paper
Dedicated: Dedicated to Sergeĭ Vladimirovich Vostokov, the first supervisor of the second author
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society