Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Injectivity theorem for homotopy invariant presheafs with Witt-transfers

Author: K. Chepurkin
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 28 (2016), nomer 2.
Journal: St. Petersburg Math. J. 28 (2017), 291-297
MSC (2010): Primary 19G12; Secondary 11E81
Published electronically: February 15, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A definition of the category of Witt-correspondences over a field of characteristic different from 2 is given, the presheafs with Witt-transfers are introduced, and a series of general properties of these objects are established. In Theorem 1, the injectivity theorem is shown to be true for a homotopy invariant presheaf with Witt-transfers and for the local ring of a smooth variety. As a consequence, the injectivity theorem is proved for the Witt functor.

References [Enhancements On Off] (What's this?)

  • 1. Witt, E., Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1936), 31-44. MR 1581519
  • 2. M. Knebusch, Symmetric bilinear forms over algebraic varieties, Conf. on Quadratic Forms (Kingston, 1976), Queen's Papers Pure and Appl. Math., No. 46, Queen's Univ., Kingston, Ont., 1977, pp. 103-283. MR 0498378
  • 3. P. Balmer, Triangular Witt groups. Pt. I. The 12-term localization exact sequence, K-Theory 19 (2000), no. 4, 311-363. MR 1763933
  • 4. -, Triangular Witt groups. Pt. II. From usual to derived, Math. Z. 236 (2001), no. 2, 351-382. MR 18115833 (2002h:19003)
  • 5. S. Gille and A. Nenashev, Pairings in triangular Witt theory, J. Algebra 261 (2003), no. 2, 292-309. MR 1966631
  • 6. A. Nenashev, Projective push-forwards in the Witt theory of algebraic varieties, Adv. Math. 220 (2009), no. 6, 1923-1944. MR 2493184
  • 7. M. Ojanguren, Quadratic forms over local rings, J. Indian Math. Soc. (N.S.) 44 (1980) no. 1-4, 109-116. MR 752647
  • 8. A. Altman and S. Kleiman, Introduction to Grothendick duality theory, Lecture Notes in Math., vol. 146, Springer-Verlag, Berlin, 1970. MR 0274461
  • 9. M. Ojanguren and I. Panin, A purity theorem for the Witt group, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 1, 71-86. MR 1670591
  • 10. D. Eisenbud, Commutatative algebra. With a view toward algebraic geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995. MR 1322960

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 19G12, 11E81

Retrieve articles in all journals with MSC (2010): 19G12, 11E81

Additional Information

K. Chepurkin
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia

Keywords: Quadratic form, Witt functor, Witt-correspondence, homotopy, presheaf
Received by editor(s): May 23, 2014
Published electronically: February 15, 2017
Additional Notes: Supported by RFBR (grant no. 14-01-31095)
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society